- [=¥ Australian
“S)» National
sz University

Structured Programming

COMP1110/6710

pollev.com/albertquértin963
Register for Engagement

Image Courtesy NASA/JPL-Caltech.

Computational complexity

Key computational resources required to solve a problem in a computer:
- Time

- Space (i.e.,, memory)

- Energy, communication, file I/0 traffic, etc.

Computational complexity is the study of how problem size affects resource

consumption. Key question: how resource consumption scales (grows) with increasing
problem size?

Two different dimensions (in this course we will focus on the first):

- Algorithm Complexity: study of a particular algorithm (subject matter of a field
in computer science known as Analysis of Algorithms)

- Problem Complexity: study of any possible algorithm that solves the problem
(subject matter of a field in computer science known as Computational
Complexity Theory)

School of Computing | COMP1110/6710 2025 St 24/04/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)) =

OOOOOOOOOOOOOOOOOOOOOOOO

Algorithm
complexity

Algorithm complexity ()

- We need to first identify a parameter that characterizes problem size
- Usually denoted as the lower-case letter n
- Examples of what n may denote:

- the number of elements in a list

- the number of rows/columns in a matrix (i.e., array of arrays)

- the number of samples in a data set

4 School of Computing | COMP1110/6710 2025 St 24/04/2025 ~ TEQSA PROVIDERID; : PRV12002 (AUSTRALIAN UNIVERSITY)

CRICOS PROVIDER CODE: 00120C

)ﬁ}) =

Algorithm complexity (Il)

- Then, we need to study the algorithm to determine how resource consumption grows
as a function of n (the difficult part!)

- Depending on the algorithm at hand, the value of the input, not just its size, may
influence resource consumption

- This leads to different variants of complexity (we will focus on the first two):
- Worst-case analysis considers input of size n that maximizes resource consumption
- Best-case analysis considers input of size n that minimizes resource consumption

- Average-case analysis considers all possible inputs of size n and averages their
resource consumption

- Amortized analysis considers a sequence of executions of the algorithm over an
input of size n, averaging their resource consumption. Typically useful for data
structures that implement operations with internal state, and depending on their
internal state, may require a varying amount of resource consumption

5 School of Computing | COMP1110/6710 2025 St 24/04/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY,) =

OOOOOOOOOOOOOOOOOOOOOOOO

Big O notation (formal definition)

Mathematical notation that we use to denote computational complexity

Assume that we have a problem of size n and an algorithm that we
know takes g(n) resource units to solve the problem

We say that g(n) € O(f(n)) if and only if:

(1) there exist constants ¢ > 0 and ny, > 0 such that for all n > ny, we
have that g(n) < cf(n)

(2) f(n) is the function that provides the tightest possible upper
bound in (1)

ine | COMPI1110/6710 2025 <1 2A4104/2025 2 0 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
School of Computing | COMP1110/6710 2025 St 24/04/2025 R iR couE, oo

Big O notation (example)

Which function would be f(n) in this case?

] QSA PRO! : PRV12002 (AUSTRALIAN UNIVERSITY)
School of Computing | COMP1110/6710 2025 S1 24/04/2025 ZilCL?sPPRRo\CF;ERRIgo')DREY AAAAAAAAAAAAAAAAAAAAAAA

Big O notation (practical considerations)

g(n) € 0(f(n)) roughly means “g(n) grows at the rate of f(n) for large enough n”

f(n) is determined by the leading order of g(n) (i.e., term that dominates as n — o)
We do not care about constants when dealing with Big O notation
For example:

- n?—-2n+1is 0(n?) (Quadratic growth rate)
- 100nis O(n) (linear growth rate)
- 108 is 0(1) (constant growth rate, i.e., no growth with n)

ine | COMP1110/6710 2025 Q1 o 24/104/2025 TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
8 School of Computing | COMP1110/6710 2025 S1 24/04/2025 CRIGOS PROVIDER GODE: 001296

...

Most common rates of growth
(i.e., f(n) functions)

Comparison of Function Growth Rates in Big O Notation

50

40 A

O(log n)
0O(n log n)
o(1)

o(n})

o(n~2)
0(27n)

o 30 /
[+
o
-
g
5 pd

20 /

10 / / / /

4]
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
9 School of Computing | COMP1110/6710 2025 St 24/04/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)

CRICOS PROVIDER CODE: 00120C

Time complexity

- Time complexity analysis determines the rate of growth of the number of elementary
operations (e.g., comparisons, arithmetic operations, assignment statements, etc.)
that an algorithm requires to solve the problem as problem size grows

- We assume that elementary operations take one unit of time to complete (this is not
actually the case when an actual code executes on an actual machine)

- We are not actually concerned with predicting actual computational times when the
algorithm runs in a particular computer, e.g., in microseconds (that would be highly
machine-dependent, and much harder to estimate with state-of-the-art hardware)

- Warning: library function calls do not count as elementary operations. They may
indeed trigger a complex algorithm for which you need to know the time complexity
when determining the time complexity of the calling algorithm

- Let us start with some simple examples

H TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY))
10 School of Computing | COMP1110/6710 2025 St 24/04/2025 L e o2

Summing elements in a list

Assume that the input list has n elements. At which rate does the number
of elementary operations growth with n? Use Big O notation to express it.

int sum(ArraylList<Integer> list)

{
int s = 0; 1
for (var i: list) { n
S += i; n gn)=2+2n - gn) € 0(n)
} Linear time complexity
return s; 1
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)

School of Computing | COMP1110/6710 2025 ST 24/04/2025 e SonE . 001206

...

Minimum difference among any two elements in a list

Assumption: values.size() andvalues.get(..) take unit time

n-1; _ nn-1)
int minDiff(ArrayList<Integer> values) Note that i=0 L = >

{
int min =INTEGER.MAX_VALUE; 1

for (int i=0; i<values.size(); i++) { n
nn—1)

for (int j=i+1l; j<values.size(); i++) {
int diff = Math.abs(values.get(i)-values.get(j)) " —1)
if (diff < min) { (=D 2

. . 2 -1
min=diff; n(n—1) gm)=1+n +4n(nT): 1+n+2n2-2n=2n>-n+1
} 2
} Thus, g(n) € 0(n?) Quadratic time complexity
}
return min; Question: can we do better?

)ﬂ}) 2|

i TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY))
12 School of Computing | COMP1110/6710 2025 St 24/04/2025 RS AROVBER Cooe: oo

A more interesting example: Find greatest up to

- Given an unsorted list of integers with n elements, find the largest element in the list

< x, with x being a given input integer number. If all the elements in the list are larger
than x, return null

- Let us analyse the time complexity of two different approaches:
1. Directly search the unsorted list

2. First sort the list in increasing order, then search the sorted list

)ﬂ}) =

13 School of Computing | COMP1110/6710 2025 St 24/04/2025 TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY,)

CRICOS PROVIDER CODE: 00120C

Unsorted Greatest Up To

Integer unsortedGreatestUpTo

(ArrayList<Integer> list, int x)

Integer best = null;
for (var e: list)
{
if (e==x)
return e;
if (e<x && (best == null || e>best))
best=e;
}

return best;

14 School of Computing | COMP1110/6710 2025 St

Time complexity analysis

- Best-case: 1ist.get(0)==x
- Worst-case:

list == [x-n, x-n+1, .., x-2, x-1]
We perform all comparisons and update
best at every loop iteration

gn)=cn - gn) € 0(n)
(linear time complexity)

&)..

24/04/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Unsorted Greatest Up To

Actual time measurements versus problem size

15 School of Computing | COMP1110/6710 2025 St 24/04/2025 EER?CS;SPPR%\OFDESRI'é:DPDRE\:/EDO]DZZDé AAAAAAAAAAAAAAAAAAAA

Sorted Greatest Up To (Binary search)

Integer sortedGreatestUpTo

(ArrayList<Integer> list, int x)
{ Time complexity analysis

if (list.isEmpty() || list.get(®) > x)
How many loop iterations?
- Initially, upper-lower==n
- The difference is halved at every iteration
int upper=list.size(); //one past the end - Can halve it at most log,(n) times before it becomes 1
- g =alog,(n) + b - g(n) € 0(log(n))
(logarithmic time complexity)

return null;

int lower=0;

while (upper-lower>1) {
int mid = (lower+upper)/2; //int division

if (list.get(mid) <= x)

lower = mid;
else . Note: Loop invariant (assuming no repeated elements)
upper = mid; list.get(lower) <= x < list.get(upper)

}

return list.get(lower);

i TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
16 School of Computing | COMP1110/6710 2025 St 24/04/2025 RS AROVBER Cooe: oo

Sorted Greatest Up To

Actual time measurements versus problem size

17 School of Computing | COMP1110/6710 2025 St 24/04/2025 EER?CS;SPPR%\OFDE;RI'36!732\(10200]02%& AAAAAAAAAAAAAAAAAAAA

Problem complexity

Problem complexity

The complexity of a problem is the amount of resources that any algorithm that
solves the problem must use, in the worst case, as a function of the size of the
arguments

In other words, the complexity of a problem is the infimum of the complexities among
all algorithms that solve the problem

For example, it is possible to proof that any possible sorting algorithm that uses pair-
wise comparisons needs at least O(nlog(n)) comparisons in the worst case

Proving these kind of results is out of the scope of the course, and in general, it
requires advances arguments in the mathematical theory of computation

H TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY))
School of Computing | COMP1110/6710 2025 St 24/04/2025 R iR couE, oo

MyArrayL1st<E>

Let us write our own class implementation of the
List<E> generic interface using an array of
elements of type E, using the concept illustrated
below, and study the best-case and worst-case
time complexity of different operations

Array-based List

~=-/ National
/ / / /‘ ’\ =7 University

Actual elements Extra capacity
of the list for future elements

Design a generic class MyArrayList<E>, parameterized by the type of
the elements E, that implements a partial set of the methods in the
List<E> interface, namely: (1) add a new element; (2) remove an
element; (3) size; (4) isEmpty; (5) get; 6) set; (7) containsAll; (8) iterator.
Follow the design recipe! Perform a best-case and worst-case time
complexity analysis of each of these methods, and express the result of
the analysis using Big O notation.

In order to get you started, we will demonstrate the class definitions,
the implementation and time complexity analysis of (1). Then, you will
have time to implement and analyse during the workshop the rest of
operations, starting with operation (2).

ine | COMPI1110/6710 2025 <1 2A4104/2025 2 0 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
21 School of Computing | COMP1110/6710 2025 S1 24/04/2025 VDR Cooe. Coroon

	1A
	Slide 1
	Slide 2: Computational complexity
	Slide 3: Algorithm complexity
	Slide 4: Algorithm complexity (I)
	Slide 5: Algorithm complexity (II)
	Slide 6: Big cap omicron notation (formal definition)
	Slide 7: Big cap omicron notation (example)
	Slide 8: Big cap omicron notation (practical considerations)
	Slide 9: Most common rates of growth (i.e., f of n functions)
	Slide 10: Time complexity
	Slide 11: Summing elements in a list
	Slide 12: Minimum difference among any two elements in a list
	Slide 13: A more interesting example: Find greatest up to
	Slide 14: Unsorted Greatest Up To
	Slide 15: Unsorted Greatest Up To
	Slide 16: Sorted Greatest Up To (Binary search)
	Slide 17: Sorted Greatest Up To
	Slide 18: Problem complexity
	Slide 19: Problem complexity
	Slide 20: MyArrayList<E>
	Slide 21: Practice

