
COMP1110/6710
Structured Programming

Image Courtesy NASA/JPL-Caltech.

pollev.com/albertofmartin963
Register for Engagement

Needs ANU Account!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

2

Computational complexity

24/04/2025School of Computing | COMP1110/6710 2025 S1

Key computational resources required to solve a problem in a computer:

- Time

- Space (i.e., memory)

- Energy, communication, file I/O traffic, etc.

Computational complexity is the study of how problem size affects resource
consumption. Key question: how resource consumption scales (grows) with increasing
problem size?

Two different dimensions (in this course we will focus on the first):

- Algorithm Complexity: study of a particular algorithm (subject matter of a field
in computer science known as Analysis of Algorithms)

- Problem Complexity: study of any possible algorithm that solves the problem
(subject matter of a field in computer science known as Computational
Complexity Theory)

Algorithm
complexity

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

4

Algorithm complexity (I)

24/04/2025School of Computing | COMP1110/6710 2025 S1

- We need to first identify a parameter that characterizes problem size

- Usually denoted as the lower-case letter 𝑛

- Examples of what 𝑛 may denote:

- the number of elements in a list

- the number of rows/columns in a matrix (i.e., array of arrays)

- the number of samples in a data set

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

5

Algorithm complexity (II)

24/04/2025School of Computing | COMP1110/6710 2025 S1

- Then, we need to study the algorithm to determine how resource consumption grows
as a function of 𝑛 (the difficult part!)

- Depending on the algorithm at hand, the value of the input, not just its size, may
influence resource consumption

- This leads to different variants of complexity (we will focus on the first two):

- Worst-case analysis considers input of size 𝑛 that maximizes resource consumption

- Best-case analysis considers input of size 𝑛 that minimizes resource consumption

- Average-case analysis considers all possible inputs of size 𝑛 and averages their
resource consumption

- Amortized analysis considers a sequence of executions of the algorithm over an
input of size 𝑛, averaging their resource consumption. Typically useful for data
structures that implement operations with internal state, and depending on their
internal state, may require a varying amount of resource consumption

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

6

Big Ο notation (formal definition)

24/04/2025School of Computing | COMP1110/6710 2025 S1

Mathematical notation that we use to denote computational complexity

Assume that we have a problem of size 𝑛 and an algorithm that we
know takes 𝑔 𝑛 resource units to solve the problem

We say that 𝑔 𝑛 ∈ Ο(𝑓 𝑛) if and only if:

(1) there exist constants 𝑐 > 0 and 𝑛0 > 0 such that for all 𝑛 > 𝑛0 we
have that 𝑔 𝑛 ≤ 𝑐𝑓 𝑛

(2) 𝑓 𝑛 is the function that provides the tightest possible upper
bound in (1)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

7

Big Ο notation (example)

24/04/2025School of Computing | COMP1110/6710 2025 S1

ℎ1 𝑛 = 𝛼𝑛

ℎ1 𝑛 = 𝛽𝑛

Which function would be 𝑓 𝑛 in this case?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

8

Big Ο notation (practical considerations)

24/04/2025School of Computing | COMP1110/6710 2025 S1

- 𝑔(𝑛) ∈ Ο(𝑓 𝑛) roughly means “𝑔(𝑛) grows at the rate of 𝑓 𝑛 for large enough 𝑛”

- 𝑓 𝑛 is determined by the leading order of 𝑔(𝑛) (i.e., term that dominates as 𝑛 → ∞)

- We do not care about constants when dealing with Big Ο notation

- For example:

- 𝑛2 − 2𝑛 + 1 is Ο 𝑛2 (quadratic growth rate)

- 100𝑛 is Ο 𝑛 (linear growth rate)

- 1018 is Ο 1 (constant growth rate, i.e., no growth with 𝑛)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

9

Most common rates of growth
(i.e., 𝑓 𝑛 functions)

24/04/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

10

Time complexity

24/04/2025School of Computing | COMP1110/6710 2025 S1

- Time complexity analysis determines the rate of growth of the number of elementary
operations (e.g., comparisons, arithmetic operations, assignment statements, etc.)
that an algorithm requires to solve the problem as problem size grows

- We assume that elementary operations take one unit of time to complete (this is not
actually the case when an actual code executes on an actual machine)

- We are not actually concerned with predicting actual computational times when the
algorithm runs in a particular computer, e.g., in microseconds (that would be highly
machine-dependent, and much harder to estimate with state-of-the-art hardware)

- Warning: library function calls do not count as elementary operations. They may
indeed trigger a complex algorithm for which you need to know the time complexity
when determining the time complexity of the calling algorithm

- Let us start with some simple examples

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

int sum(ArrayList<Integer> list)

{

 int s = 0;

 for (var i: list) {

 s += i;

 }

 return s;

}

11

Summing elements in a list

24/04/2025School of Computing | COMP1110/6710 2025 S1

Assume that the input list has 𝑛 elements. At which rate does the number
of elementary operations growth with 𝑛? Use Big Ο notation to express it.

1
𝑛
𝑛

1

𝑔 𝑛 = 2 + 2𝑛 → 𝑔 𝑛 ∈ Ο(𝑛)

Linear time complexity

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

int minDiff(ArrayList<Integer> values)

{

 int min =INTEGER.MAX_VALUE;

 for (int i=0; i<values.size(); i++) {

 for (int j=i+1; j<values.size(); i++) {

 int diff = Math.abs(values.get(i)-values.get(j))

 if (diff < min) {

 min=diff;

 }

 }

 }

 return min;

}

12

Minimum difference among any two elements in a list

24/04/2025School of Computing | COMP1110/6710 2025 S1

Assumption: values.size() and values.get(…) take unit time

𝑔 𝑛 = 1 + 𝑛 + 4
𝑛(𝑛 − 1)

2
= 1 + 𝑛 + 2𝑛2 − 2𝑛 = 2𝑛2 − 𝑛 + 1

Thus, 𝑔 𝑛 ∈ Ο(𝑛2) Quadratic time complexity

Note that σ𝑖=0
𝑛−1 𝑖 =

𝑛(𝑛−1)

2

1

𝑛
𝑛(𝑛 − 1)

2
𝑛(𝑛 − 1)

2

𝑛(𝑛 − 1)

2

𝑛(𝑛 − 1)

2

Question: can we do better?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

13

A more interesting example: Find greatest up to

24/04/2025School of Computing | COMP1110/6710 2025 S1

- Given an unsorted list of integers with 𝑛 elements, find the largest element in the list
≤ 𝑥, with 𝑥 being a given input integer number. If all the elements in the list are larger
than 𝑥, return null

- Let us analyse the time complexity of two different approaches:

1. Directly search the unsorted list

2. First sort the list in increasing order, then search the sorted list

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Integer unsortedGreatestUpTo

 (ArrayList<Integer> list, int x)

{

 Integer best = null;

 for (var e: list)

 {

 if (e==x)

 return e;

 if (e<x && (best == null || e>best))

 best=e;

 }

 return best;

}

14

Unsorted Greatest Up To

24/04/2025School of Computing | COMP1110/6710 2025 S1

Time complexity analysis

- Best-case: list.get(0)==x
- Worst-case:

- list == [x-n, x-n+1, …, x-2, x-1]
- We perform all comparisons and update

best at every loop iteration
- 𝑔 𝑛 = 𝑐𝑛 → 𝑔 𝑛 ∈ Ο 𝑛
 (linear time complexity)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

15

Unsorted Greatest Up To

24/04/2025School of Computing | COMP1110/6710 2025 S1

Actual time measurements versus problem size

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Integer sortedGreatestUpTo

 (ArrayList<Integer> list, int x)

{

 if (list.isEmpty() || list.get(0) > x)

 return null;

 int lower=0;

 int upper=list.size(); //one past the end

 while (upper-lower>1) {

 int mid = (lower+upper)/2; //int division

 if (list.get(mid) <= x)

 lower = mid;

 else

 upper = mid;

 }

 return list.get(lower);

}

16

Sorted Greatest Up To (Binary search)

24/04/2025School of Computing | COMP1110/6710 2025 S1

Time complexity analysis

 How many loop iterations?
- Initially, upper-lower==n
- The difference is halved at every iteration
- Can halve it at most 𝑙𝑜𝑔2(𝑛) times before it becomes 1
- 𝑔 𝑛 = 𝑎 𝑙𝑜𝑔2 𝑛 + 𝑏 → 𝑔 𝑛 ∈ Ο log 𝑛
 (logarithmic time complexity)

Note: Loop invariant (assuming no repeated elements)
list.get(lower) <= x < list.get(upper)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

17

Sorted Greatest Up To

24/04/2025School of Computing | COMP1110/6710 2025 S1

Actual time measurements versus problem size

Problem complexity

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

19

Problem complexity

24/04/2025School of Computing | COMP1110/6710 2025 S1

- The complexity of a problem is the amount of resources that any algorithm that
solves the problem must use, in the worst case, as a function of the size of the
arguments

- In other words, the complexity of a problem is the infimum of the complexities among
all algorithms that solve the problem

- For example, it is possible to proof that any possible sorting algorithm that uses pair-
wise comparisons needs at least 𝛰 𝑛𝑙𝑜𝑔 𝑛 comparisons in the worst case

- Proving these kind of results is out of the scope of the course, and in general, it
requires advances arguments in the mathematical theory of computation

MyArrayList<E>
Let us write our own class implementation of the
List<E> generic interface using an array of
elements of type E, using the concept illustrated
below, and study the best-case and worst-case
time complexity of different operations

Array-based List

10 -2 7

Extra capacity
for future elements

Actual elements
of the list

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

21

Practice

24/04/2025School of Computing | COMP1110/6710 2025 S1

Design a generic class MyArrayList<E>, parameterized by the type of
the elements E, that implements a partial set of the methods in the
List<E> interface, namely: (1) add a new element; (2) remove an
element; (3) size; (4) isEmpty; (5) get; 6) set; (7) containsAll; (8) iterator.
Follow the design recipe! Perform a best-case and worst-case time
complexity analysis of each of these methods, and express the result of
the analysis using Big O notation.

In order to get you started, we will demonstrate the class definitions,
the implementation and time complexity analysis of (1). Then, you will
have time to implement and analyse during the workshop the rest of
operations, starting with operation (2).

	1A
	Slide 1
	Slide 2: Computational complexity
	Slide 3: Algorithm complexity
	Slide 4: Algorithm complexity (I)
	Slide 5: Algorithm complexity (II)
	Slide 6: Big cap omicron notation (formal definition)
	Slide 7: Big cap omicron notation (example)
	Slide 8: Big cap omicron notation (practical considerations)
	Slide 9: Most common rates of growth (i.e., f of n functions)
	Slide 10: Time complexity
	Slide 11: Summing elements in a list
	Slide 12: Minimum difference among any two elements in a list
	Slide 13: A more interesting example: Find greatest up to
	Slide 14: Unsorted Greatest Up To
	Slide 15: Unsorted Greatest Up To
	Slide 16: Sorted Greatest Up To (Binary search)
	Slide 17: Sorted Greatest Up To
	Slide 18: Problem complexity
	Slide 19: Problem complexity
	Slide 20: MyArrayList<E>
	Slide 21: Practice

