\ustralian
ational
niversity

Structured Programming

COMPITI0/E 710

Revisiting
min-difference

[Distinction-Level Content]

-] Austiralian
National
University

]
)

(

S

8chool of Computing | COMP1110/6710 2025 St 30/04/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)

CRICOS PROVIDER CODE: 00120C

Two-list max-difference

int maxDifference(int[] al, int[] a2) {
Arrays.sort(al);

Arrays.sort(a2);
return Math.max(Math.abs(al[@]-a2[a2.length-1]),
Math.abs(a2[@]-al[al.length-1]));

Two-list max-difference

int maxDifference(int[] al, int[] a2) {
Arrays.sort(al);
Arrays.sort(a2);
return Math.max(Math.abs(al[@]-a2[a2.length-1]),
Math.abs(a2[@]-al[al.length-1]));

Two-list min-difference

alo a11 a1|a1|_1

(
‘azo azq ‘azz a2|a2|_1‘

Clli Cl].i
Cl2] O Cl2j Cl2j+ 2j+2 Cl2j+3

Code in demonstrations-repo

https://gitlab.cecs.anu.edu.au/comp1110/2025s1/comp1110-2025s1-intellij-demonstrations

min-difference (Exercise)

Back to the original problem:
You have one list, and want to know the minimum difference between any

two elements in it.

- Canyou use the two-list version?
- How would a specialized one-list version work?

Today’s Theme:
Stack vs. Heap

Also: more on Types

Recall: Stack & Heap
Stack

- A data structure where you can only
remove/add things at the top

public static int sumUpTo(int n) {
if(n<=0) { return n/n; }
else {
return n + sumUpTo(n-1);

sumUpTo {n
sumUpTo {n
sumUpTo {n
sumUpTo {n
sumUpTo {n
sumUpTo {n

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

01 A W N

Recall: Stack & Heap

A Stack Trace

Exce
at
at
at
at
at
at
at

ption in thread "main" java.lang.ArithmeticExc

ws9a.SumUpToBugged.
ws9a.SumUpToBugged.
ws9a.SumUpToBugged.
ws9a.SumUpToBugged.
ws9a.SumUpToBugged.
ws9a.SumUpToBugged.
.main(SumUpToBugged.java:13

ws9a.SumUpToBugged

sumUpTo(SumUpToBugged. java
sumUpTo(SumUpToBugged. java

sumUpTo(SumUpToBugged. java:
sumUpTo(SumUpToBugged. java:
sumUpTo(SumUpToBugged. java:
sumUpTo(SumUpToBugged. java:

Process finished with exit code 1

School of Computing | COMP1110/6710 2025 St

30/04/2025

eption: / by zero

:8)\ 1

)

//7

RRR
OOOOOOOOOOOOOOOOOOOOOOOO

Recall: Stack & Heap
Values on the Stack

n 0 These boxes can contain one of:
- A primitive value (of a primitive type)

- boolean

- byte

- char

- short

- int

- long

- float
double

- A pointer to an object on the Heap (of a reference type)

Boxes (and values in them)
only exist for duration of
method call.

10 School of Computing | COMP1110/6710 2025 St 30/04/2025 TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)

CRICOS PROVIDER CODE: 00120C

Recall: Stack & Heap
Heap Values

Bigger boxes that can contain
multiple smaller boxes
Arrays or regular Objects

- Both inherit from Object anyway
Usually created with “new”

- But also String constants,
49 autoboxing (next)
someFun _ _ - Exist as long as something
pair @——__ first points to them
Stack second

School of Computing | COMP1110/6710 2025 St

30/04/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Autoboxing

=
&

SV

=] Australian
~—=/ National
==~ University

12 School of Computing | COMP1110/67102025 S1 30/04/2025

Recall: Type Erasure

)

public class Cell<T> {
T value;

public class Cell {
Object value;

}

This means T has to be a reference type -

primitive types don’t have methods,
Cell<integer> \/ including equals and toString

Cell<int> x

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Wrapper Types
int 1=5;

boolean Boolean someFun <
Integer j = i,
byte Byte
char Character int k = j;
short Short .
Integer m = j;
int Integer
long Long i= 3;
float Float
J = 1;
double Double
ms= 1;

14 School of Computing | COMP1110/6710 2025 S1 30/04/2025 TEQSA PROVIDER ID: : PRVI2002 (AUSTRALIAN UNIVERSIT v)

CRICOS PROVIDER CODE: 00120C

Wrapper Types

Primitive Type Reference Type

boolean Boolean
byte Byte
char Character
short Short

int Integer
long Long
float Float
double Double

int 1 = 5;

Integer j
int k = j;
Integer m
1 = 3;
J =1
m=1ij;

A
m null
k 0
someFun <
i ‘ j
QC//E) | 5
N 3
R 60./—
Js Y
f) /%Q)}
5
value

School of Computing | COMP1110/6710 2025 S1

30/04/2025

CRICOS PROVIDER CODE: 00120C

Wrapper Types

Primitive Type Reference Type

boolean Boolean
byte Byte

char Character
short Short

int Integer
long Long
float Float
double Double

7z
m null
int i = 5; kK 5
someFun <
Integer j = 1i; |
int k = j; « NS}
N
Integer m = j; “auto-unboxing”
1 = 3; 5
J =15 value
m=1ij;

School of Computing | COMP1110/6710 2025 S1

30/04/2025 TEQSA PROVIDER ID: : PRVI2002 (AUSTRALIAN UNIVERSIT v)
CRICOS PROVIDER CODE: 00120C

Wrapper Types

Primitive Type Reference Type

boolean Boolean
byte Byte
char Character
short Short

int Integer
long Long
float Float
double Double

int 1 5;
Integer j =
int k = j;
Integer m =
1 = 3;

J =1
m=1ij;

someFun <
i;

School of Computing | COMP1110/6710 2025 S1

30/04/2025

CRICOS PROVIDER CODE: 00120C

Wrapper Types

Primitive Type Reference Type

boolean Boolean
byte Byte
char Character
short Short

int Integer
long Long
float Float
double Double

int 1 = 5;
Integer j =
int k = j;
Integer m =
1 = 3;

J =1
m=1ij;

i;

Js

someFun <

School of Computing | COMP1110/6710 2025 S1

30/04/2025

CRICOS PROVIDER CODE: 00120C

Wrapper Types
int i = 5;

boolean Boolean someFun <
Integer j = i,
byte Byte
char Character int k = j;
short Short .
Integer m = j;
int Integer
long Long i= 3;
float Float .)
J =1,
double Double

19 School of Computing | COMP1110/6710 2025 S1 30/04/2025 TEQSA PROVIDER ID: : PRVI2002 (AUSTRALIAN UNIVERSIT v)

CRICOS PROVIDER CODE: 00120C

Wrapper Types

Primitive Type Reference Type

boolean Boolean
byte Byte
char Character
short Short

int Integer
long Long
float Float
double Double

“auto-boxing”

int 1 = 5;
Integer j =
int k = j;
Integer m =
1 = 3;

J =1
m=1ij;

i;

Js

someFun <

20

School of Computing | COMP1110/6710 2025 S1

30/04/2025

CRICOS PROVIDER CODE: 00120C

Wrapper Types

Primitive Type Reference Type

boolean Boolean
byte Byte
char Character
short Short

int Integer
long Long
float Float
double Double

int 1 = 5;
Integer j =
int k = j;
Integer m =
1 = 3;

J =1
m=1ij;

i;

Js

someFun <

21

School of Computing | COMP1110/6710 2025 S1

30/04/2025

CRICOS PROVIDER CODE: 00120C

Wrapper Types

Primitive Type Reference Type

boolean Boolean
byte Byte
char Character
short Short

int Integer
long Long
float Float
double Double

int 1 = 5;
Integer j =
int k = j;

Integer m =

m\

\

1

k5‘I
someFun < :
1; 1
1
1
1
1
1

|

. |
Js |
o1

I

I

I

I

I

4

22

School of Computing | COMP1110/6710 2025 S1

30/04/2025

CRICOS PROVIDER CODE: 00120C

value

Autoboxing - Summary

Boxing - creating a heap-value that stores a primitive value
Unboxing - retrieving a primitive value from a wrapper value
Auto-Boxing - the idea that Java does this for you automatically

Just because its automated does not mean you don’t have to be aware,
see: equals vs ==

i TEQSA PROVIDER ID: : PRV12002 (AUSTRALIAN UNIVERSITY)
23 School of Computing | COMP1110/6710 2025 S1 30/04/2025 L O e o2

Lambdas &
Functional
Interfaces

Or: why there is a difference between
.apply and .test

0000000000

Function Types
What we’ve seen so far

“Functional Interfaces”

- Function<T,R> public interface Function<T,R> {
- BiFunction<T,U,R> } R apply(T t);
- Predicate<T> o _ _
.] public interface BiFunction<T,U,R> {
- BiPredicate<T,U> R apply(T t, U u);
}

public interface Predicate<T> {
boolean test(T t);

}

RRR
OOOOOOOOOOOOOOOOOOOOOOOO

Functional Interfaces

Are interfaces with a single abstract instance method (i.e. not default,
not static).

Java comes with more than those four we saw (see java.util.function),
and you can write your own.

Why Predicate<T> and not Function<T, Boolean> ?
=» Boxing: Predicate<T>.test hasreturn type boolean

public interface Function<T,R> { public interface Predicate<T> {
R apply(T t); boolean test(T t);

} }

ine | COMPI110/671020251 ... ! ’30/04/2025 TEQSA PROVIDER ID: PRV2002 (AUSTRALIAN UNIVERSITY)
26 School of Computing | COMP1110/6710 2025 S1 30/04/2025 L O e o2

Functional Interfaces

public interface MyFun<T> {
List<T> append(T element);

List<String> foo(MyFun<String> fun) {
return fun.append(“Hello!”);

27 School of Computing | COMP1110/6710 2025 St

30/04/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

...

Functional Interfaces & Closures

public interface MyFun<T> { List<String> foo(MyFun<String> fun) {
List<T> append(T element); return fun.append(“Hello!”);
}
}
f
public MyFun<String> makeMyFun() { f null
: : . makeMyFun <
List<String> 1 = new ArraylList<>(); l
MyFun<String> f = str -> { .
l.add(str);
return 1;
}s
return f;
}

; QSA PRO! : PRV12002 (AUSTRALIAN UNIVERSITY)
28 School of Computing | COMP1110/6710 2025 S1 30/04/2025 gERICOASPPRROVVHIJEfERRIgOPDRE\:I AAAAAAAAAAAAAAAAAAAAAAAA

public interface MyFun<T> {

Functional Interfaces & Closures

List<T> append(T element);
}

List<String> foo(MyFun<String> fun) {
}

return fun.append(“Hello!”);
public MyFun<String> makeMyFun() {

List<String> 1 = new ArraylList<>();
MyFun<String> ¥ = str -> {

.I:
makeMyFun
l.add(str);
return 1;
}s

return f;

29

School of Computing | COMP1110/6710 2025 S1

30/04/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

public interface MyFun<T> {

Functional Interfaces & Closures

List<T> append(T element);
}

List<String> foo(MyFun<String> fun) {
}

return fun.append(“Hello!”);
public MyFun<String> makeMyFun() {

List<String> 1 = new ArraylList<>();
MyFun<String> ¥ = str -> {

l.add(str);
return 1;

.I:
makeMyFun

}s

return f;

30 School of Computing | COMP1110/6710 2025 S1

30/04/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

public interface MyFun<T> {

Functional Interfaces & Closures

List<T> append(T element);
}

List<String> foo(MyFun<String> fun) {
}

return fun.append(“Hello!”);
public MyFun<String> makeMyFun() {

List<String> 1 = new ArraylList<>();
MyFun<String> ¥ = str -> {

l.add(str);

Returned value
return 1;

}s

return f;

31 School of Computing | COMP1110/6710 2025 S1

How do we getto 17

30/04/2025

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Functional Interfaces & Closures

public interface MyFun<T> { List<String> foo(MyFun<String> fun) {
List<T> append(T element); return fun.append(“Hello!”);
}
}
public MyFun<String> makeMyFun() { f
makeMyFun

List<String> 1 = new ArraylList<>();

MyFun<String> f = str -> { «
1l.add(str);
return 1; “Closures” capture part
}s of the stack on the heap,
return f; to make it possible to use

) later.

32 School of Computing | COMP1110/6710 2025 S1 30/04/2025

Functional Interf

public interface MyFun<T> {
List<T> append(T element);

_ makeMyFun <
What we’ve said before: Y

Imperative Programming .

Each variable represents a single slot
whose content can be accessed and
changed throughout its scope

33 School of Computing | COMP1110/6710 2025 St 30/04/2025 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY))

OOOOOOOOOOOOOOOOOOOOOOOO

Functional Interf

public interface MyFun<T> {
List<T> append(T element);

makeMyFun <

Java’s Solution .

When there are multiple slots representing
the same variable, they need to be “final” or
“effectively final”, meaning you can only

assign the variable once.

ine | COMPI110/6710 2025 Q1 90/04/202?5 2000 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
34 School of Computing | COMP1110/6710 2025 St 30/04/2025 TEQSA PROVIDER 1D: PR Oél]g AAAAAAAAAAAAAAAAAAAA

Closures - Summary

Closures capture part of the stack, by effectively copying the relevant
boxes when the closure is created

To make this work out, the boxes need to be “read-only”, which Java
calls “final” or “effectively” final.

In a wider sense, closures capture any sort of state apart from the
arguments of a function = Objects are big closures, too.

ine | COMPI110/6710 2025 Q1 90/04/202?5 2000 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
35 School of Computing | COMP1110/6710 2025 St 30/04/2025 ~ TEQSA BROVIDER ID: PRVI2002 (AUSTRALIAN UNIVERSITY

	1A
	Slide 1
	Slide 2: Revisiting min-difference
	Slide 3: Two-list max-difference
	Slide 4: Two-list max-difference
	Slide 5: Two-list min-difference
	Slide 6: min-difference (Exercise)
	Slide 7: Today’s Theme: Stack vs. Heap
	Slide 8: Recall: Stack & Heap
	Slide 9: Recall: Stack & Heap
	Slide 10: Recall: Stack & Heap
	Slide 11: Recall: Stack & Heap
	Slide 12: Autoboxing
	Slide 13: Recall: Type Erasure
	Slide 14: Wrapper Types
	Slide 15: Wrapper Types
	Slide 16: Wrapper Types
	Slide 17: Wrapper Types
	Slide 18: Wrapper Types
	Slide 19: Wrapper Types
	Slide 20: Wrapper Types
	Slide 21: Wrapper Types
	Slide 22: Wrapper Types
	Slide 23: Autoboxing - Summary
	Slide 24: Lambdas & Functional Interfaces
	Slide 25: Function Types
	Slide 26: Functional Interfaces
	Slide 27: Functional Interfaces
	Slide 28: Functional Interfaces & Closures
	Slide 29: Functional Interfaces & Closures
	Slide 30: Functional Interfaces & Closures
	Slide 31: Functional Interfaces & Closures
	Slide 32: Functional Interfaces & Closures
	Slide 33: Functional Interfaces & Closures
	Slide 34: Functional Interfaces & Closures
	Slide 35: Closures - Summary

