
COMP1110/6710
Structured Programming

Image Courtesy NASA/JPL-Caltech.

T
E

Q
S

A
 P

R
O

V
ID

E
R

 ID
:P

R
V

12
0

0
2

(A
U

S
T

R
A

LI
A

N
 U

N
IV

E
R

S
IT

Y
)

C
R

IC
O

S
 P

R
O

V
ID

E
R

 C
O

D
E

: 0
0

12
0

C

Revisiting
min-difference
[Distinction-Level Content]

2 30/04/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

int maxDifference(int[] a1, int[] a2) {

 Arrays.sort(a1);

 Arrays.sort(a2);

 return Math.max(Math.abs(a1[0]-a2[a2.length-1]),

 Math.abs(a2[0]-a1[a1.length-1]));

}

Two-list max-difference

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

int maxDifference(int[] a1, int[] a2) {

 Arrays.sort(a1);

 Arrays.sort(a2);

 return Math.max(Math.abs(a1[0]-a2[a2.length-1]),

 Math.abs(a2[0]-a1[a1.length-1]));

}

Two-list max-difference

𝑎2 𝑎2 −1

𝑎1 𝑎1 −1…

…

𝑎10

𝑎20 𝑎21

𝑎11

𝑎22 …

…

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Two-list min-difference

𝑎10

𝑎20 𝑎21

𝑎11

𝑎22 …

…

𝑎2 𝑎2 −1

𝑎1 𝑎1 −1…

…

𝑎1𝑖

𝑎2𝑗

Code in demonstrations-repo

𝑎1𝑖

𝑎2𝑗+1𝑎2𝑗 𝑎2𝑗+2 𝑎2𝑗+30

https://gitlab.cecs.anu.edu.au/comp1110/2025s1/comp1110-2025s1-intellij-demonstrations

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

min-difference (Exercise)

Back to the original problem:
You have one list, and want to know the minimum difference between any
two elements in it.

- Can you use the two-list version?
- How would a specialized one-list version work?

Today’s Theme:
Stack vs. Heap
Also: more on Types

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- A data structure where you can only
remove/add things at the top

public static int sumUpTo(int n) {

 if(n<=0) { return n/n; }

 else {

 return n + sumUpTo(n-1);

 }

}

Recall: Stack & Heap
Stack

…
5

4

3

2

1

0

n

n

n

n

n

nsumUpTo

sumUpTo

sumUpTo

sumUpTo

sumUpTo

sumUpTo

psvm

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Exception in thread "main" java.lang.ArithmeticException: / by zero
at ws9a.SumUpToBugged.sumUpTo(SumUpToBugged.java:6)
at ws9a.SumUpToBugged.sumUpTo(SumUpToBugged.java:8)
at ws9a.SumUpToBugged.sumUpTo(SumUpToBugged.java:8)
at ws9a.SumUpToBugged.sumUpTo(SumUpToBugged.java:8)
at ws9a.SumUpToBugged.sumUpTo(SumUpToBugged.java:8)
at ws9a.SumUpToBugged.sumUpTo(SumUpToBugged.java:8)
at ws9a.SumUpToBugged.main(SumUpToBugged.java:13)

Process finished with exit code 1

9

Recall: Stack & Heap

30/04/2025School of Computing | COMP1110/6710 2025 S1

A Stack Trace

[psvm]

5

4

3

2

1

0

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

10

Recall: Stack & Heap

30/04/2025School of Computing | COMP1110/6710 2025 S1

0n These boxes can contain one of:
- A primitive value (of a primitive type)

- boolean
- byte
- char
- short
- int
- long
- float
- double

- A pointer to an object on the Heap (of a reference type)

Values on the Stack

Boxes (and values in them)
only exist for duration of
method call.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

11

Recall: Stack & Heap

30/04/2025School of Computing | COMP1110/6710 2025 S1

Heap Values

cell

first

second

42

pair

- Bigger boxes that can contain
multiple smaller boxes

- Arrays or regular Objects
- Both inherit from Object anyway

- Usually created with “new”
- But also String constants,

autoboxing (next)
- Exist as long as something

points to them

Heap

someFun

Stack

Autoboxing

30/04/202512 School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

public class Cell<T> {

 T value;

}

Recall: Type Erasure

public class Cell {

 Object value;

}

is really

This means T has to be a reference type –
primitive types don’t have methods,
including equals and toStringCell<Integer>

Cell<int>

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

05

Primitive Type Reference Type

boolean Boolean

byte Byte

char Character

short Short

int Integer

long Long

float Float

double Double

14

Wrapper Types

30/04/2025School of Computing | COMP1110/6710 2025 S1

0

null

i

j

k
someFun

int i = 5;

Integer j = i;

int k = j;

Integer m = j;

i = 3;

j = i;

m = i;

nullm

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

5

Primitive Type Reference Type

boolean Boolean

byte Byte

char Character

short Short

int Integer

long Long

float Float

double Double

15

Wrapper Types

30/04/2025School of Computing | COMP1110/6710 2025 S1

0

null

i

j

k

value

5

int i = 5;

Integer j = i;

int k = j;

Integer m = j;

i = 3;

j = i;

m = i;

someFun

nullm

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

5

Primitive Type Reference Type

boolean Boolean

byte Byte

char Character

short Short

int Integer

long Long

float Float

double Double

16

Wrapper Types

30/04/2025School of Computing | COMP1110/6710 2025 S1

int i = 5;

Integer j = i;

int k = j;

Integer m = j;

i = 3;

j = i;

m = i;

0

null

i

j

k

value

5

5
someFun

nullm

“auto-unboxing”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

5

Primitive Type Reference Type

boolean Boolean

byte Byte

char Character

short Short

int Integer

long Long

float Float

double Double

17

Wrapper Types

30/04/2025School of Computing | COMP1110/6710 2025 S1

int i = 5;

Integer j = i;

int k = j;

Integer m = j;

i = 3;

j = i;

m = i;

0

null

i

j

k

value

5

5
someFun

nullm

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

5

Primitive Type Reference Type

boolean Boolean

byte Byte

char Character

short Short

int Integer

long Long

float Float

double Double

18

Wrapper Types

30/04/2025School of Computing | COMP1110/6710 2025 S1

int i = 5;

Integer j = i;

int k = j;

Integer m = j;

i = 3;

j = i;

m = i;

0

null

i

j

k

value

5

5
someFun

nullm

3

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

5

Primitive Type Reference Type

boolean Boolean

byte Byte

char Character

short Short

int Integer

long Long

float Float

double Double

19

Wrapper Types

30/04/2025School of Computing | COMP1110/6710 2025 S1

int i = 5;

Integer j = i;

int k = j;

Integer m = j;

i = 3;

j = i;

m = i;

0

null

i

j

k

value

5

5
someFun

nullm

3

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

5

Primitive Type Reference Type

boolean Boolean

byte Byte

char Character

short Short

int Integer

long Long

float Float

double Double

20

Wrapper Types

30/04/2025School of Computing | COMP1110/6710 2025 S1

int i = 5;

Integer j = i;

int k = j;

Integer m = j;

i = 3;

j = i;

m = i;

0

null

i

j

k

value

5

5
someFun

nullm

3

value

3
“auto-boxing”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

5

Primitive Type Reference Type

boolean Boolean

byte Byte

char Character

short Short

int Integer

long Long

float Float

double Double

21

Wrapper Types

30/04/2025School of Computing | COMP1110/6710 2025 S1

int i = 5;

Integer j = i;

int k = j;

Integer m = j;

i = 3;

j = i;

m = i;

0

null

i

j

k

value

5

5
someFun

nullm

3

value

3

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

5

Primitive Type Reference Type

boolean Boolean

byte Byte

char Character

short Short

int Integer

long Long

float Float

double Double

22

Wrapper Types

30/04/2025School of Computing | COMP1110/6710 2025 S1

int i = 5;

Integer j = i;

int k = j;

Integer m = j;

i = 3;

j = i;

m = i;

0

null

i

j

k

value

5

5
someFun

nullm

3

value

3

value

3

?

“auto-boxing”
equals

==

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Boxing – creating a heap-value that stores a primitive value

Unboxing – retrieving a primitive value from a wrapper value

Auto-Boxing – the idea that Java does this for you automatically

Just because its automated does not mean you don’t have to be aware,
see: equals vs ==

23

Autoboxing - Summary

30/04/2025School of Computing | COMP1110/6710 2025 S1

Lambdas &
Functional
Interfaces
Or: why there is a difference between

.apply and .test

24 30/04/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

- Function<T,R>

- BiFunction<T,U,R>

- Predicate<T>

- BiPredicate<T,U>

Function Types
What we’ve seen so far

public interface Function<T,R> {
 R apply(T t);
}

public interface BiFunction<T,U,R> {
 R apply(T t, U u);
}

public interface Predicate<T> {
 boolean test(T t);
}

“Functional Interfaces”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Are interfaces with a single abstract instance method (i.e. not default,
not static).

Java comes with more than those four we saw (see java.util.function),
and you can write your own.

Why Predicate<T> and not Function<T, Boolean> ?

➔ Boxing: Predicate<T>.test has return type boolean

26

Functional Interfaces

30/04/2025School of Computing | COMP1110/6710 2025 S1

public interface Function<T,R> {
 R apply(T t);
}

public interface Predicate<T> {
 boolean test(T t);
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

public interface MyFun<T> {

 List<T> append(T element);

}

…

List<String> foo(MyFun<String> fun) {

 return fun.append(“Hello!”);

}

27

Functional Interfaces

30/04/2025School of Computing | COMP1110/6710 2025 S1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

public interface MyFun<T> {

 List<T> append(T element);

}

28

Functional Interfaces & Closures

30/04/2025School of Computing | COMP1110/6710 2025 S1

List<String> foo(MyFun<String> fun) {
 return fun.append(“Hello!”);
}

public MyFun<String> makeMyFun() {

 List<String> l = new ArrayList<>();

 MyFun<String> f = str -> {

 l.add(str);

 return l;

 };

 return f;

}

l

f null
makeMyFun

null

…

…

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

public interface MyFun<T> {

 List<T> append(T element);

}

29

Functional Interfaces & Closures

30/04/2025School of Computing | COMP1110/6710 2025 S1

List<String> foo(MyFun<String> fun) {
 return fun.append(“Hello!”);
}

public MyFun<String> makeMyFun() {

 List<String> l = new ArrayList<>();

 MyFun<String> f = str -> {

 l.add(str);

 return l;

 };

 return f;

}

l

f null
makeMyFun

null

…

…

…

…

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

public interface MyFun<T> {

 List<T> append(T element);

}

30

Functional Interfaces & Closures

30/04/2025School of Computing | COMP1110/6710 2025 S1

List<String> foo(MyFun<String> fun) {
 return fun.append(“Hello!”);
}

public MyFun<String> makeMyFun() {

 List<String> l = new ArrayList<>();

 MyFun<String> f = str -> {

 l.add(str);

 return l;

 };

 return f;

}

l

f null
makeMyFun

null

…

…

…

…

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

public interface MyFun<T> {

 List<T> append(T element);

}

31

Functional Interfaces & Closures

30/04/2025School of Computing | COMP1110/6710 2025 S1

List<String> foo(MyFun<String> fun) {
 return fun.append(“Hello!”);
}

public MyFun<String> makeMyFun() {

 List<String> l = new ArrayList<>();

 MyFun<String> f = str -> {

 l.add(str);

 return l;

 };

 return f;

}

…

…

…

…

Returned value

How do we get to l?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

public interface MyFun<T> {

 List<T> append(T element);

}

32

Functional Interfaces & Closures

30/04/2025School of Computing | COMP1110/6710 2025 S1

List<String> foo(MyFun<String> fun) {
 return fun.append(“Hello!”);
}

public MyFun<String> makeMyFun() {

 List<String> l = new ArrayList<>();

 MyFun<String> f = str -> {

 l.add(str);

 return l;

 };

 return f;

}

l

f null
makeMyFun

null

…

…

l

This is a “closure”

“Closures” capture part
of the stack on the heap,
to make it possible to use
later.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

public interface MyFun<T> {

 List<T> append(T element);

}

33

Functional Interfaces & Closures

30/04/2025School of Computing | COMP1110/6710 2025 S1

List<String> foo(MyFun<String> fun) {
 return fun.append(“Hello!”);
}

l

f null
makeMyFun

null

…

…

l

Imperative Programming

Each variable represents a single slot
whose content can be accessed and
changed throughout its scope

What we’ve said before:

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

public interface MyFun<T> {

 List<T> append(T element);

}

34

Functional Interfaces & Closures

30/04/2025School of Computing | COMP1110/6710 2025 S1

List<String> foo(MyFun<String> fun) {
 return fun.append(“Hello!”);
}

l

f null
makeMyFun

null

…

…

l

Java’s Solution

When there are multiple slots representing
the same variable, they need to be “final” or
“effectively final”, meaning you can only
assign the variable once.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY)
CRICOS PROVIDER CODE: 00120C

Closures capture part of the stack, by effectively copying the relevant
boxes when the closure is created

To make this work out, the boxes need to be “read-only”, which Java
calls “final” or “effectively” final.

In a wider sense, closures capture any sort of state apart from the
arguments of a function ➔ Objects are big closures, too.

35

Closures - Summary

30/04/2025School of Computing | COMP1110/6710 2025 S1

	1A
	Slide 1
	Slide 2: Revisiting min-difference
	Slide 3: Two-list max-difference
	Slide 4: Two-list max-difference
	Slide 5: Two-list min-difference
	Slide 6: min-difference (Exercise)
	Slide 7: Today’s Theme: Stack vs. Heap
	Slide 8: Recall: Stack & Heap
	Slide 9: Recall: Stack & Heap
	Slide 10: Recall: Stack & Heap
	Slide 11: Recall: Stack & Heap
	Slide 12: Autoboxing
	Slide 13: Recall: Type Erasure
	Slide 14: Wrapper Types
	Slide 15: Wrapper Types
	Slide 16: Wrapper Types
	Slide 17: Wrapper Types
	Slide 18: Wrapper Types
	Slide 19: Wrapper Types
	Slide 20: Wrapper Types
	Slide 21: Wrapper Types
	Slide 22: Wrapper Types
	Slide 23: Autoboxing - Summary
	Slide 24: Lambdas & Functional Interfaces
	Slide 25: Function Types
	Slide 26: Functional Interfaces
	Slide 27: Functional Interfaces
	Slide 28: Functional Interfaces & Closures
	Slide 29: Functional Interfaces & Closures
	Slide 30: Functional Interfaces & Closures
	Slide 31: Functional Interfaces & Closures
	Slide 32: Functional Interfaces & Closures
	Slide 33: Functional Interfaces & Closures
	Slide 34: Functional Interfaces & Closures
	Slide 35: Closures - Summary

