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Revisiting
min-difference
[Distinction-Level Content]
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int maxDifference(int[] a1, int[] a2) {

    Arrays.sort(a1);

    Arrays.sort(a2);

    return Math.max(Math.abs(a1[0]-a2[a2.length-1]),

                    Math.abs(a2[0]-a1[a1.length-1]));

}

Two-list max-difference
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Two-list min-difference
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Code in demonstrations-repo
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https://gitlab.cecs.anu.edu.au/comp1110/2025s1/comp1110-2025s1-intellij-demonstrations
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min-difference (Exercise)

Back to the original problem:
You have one list, and want to know the minimum difference between any
two elements in it.

- Can you use the two-list version?
- How would a specialized one-list version work?



Today’s Theme:
Stack vs. Heap
Also: more on Types
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- A data structure where you can only 
remove/add things at the top

public static int sumUpTo(int n) {

  if(n<=0) { return n/n; }

  else { 

    return n + sumUpTo(n-1);

  }

}

Recall: Stack & Heap
Stack

…
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Exception in thread "main" java.lang.ArithmeticException: / by zero
at ws9a.SumUpToBugged.sumUpTo(SumUpToBugged.java:6)
at ws9a.SumUpToBugged.sumUpTo(SumUpToBugged.java:8)
at ws9a.SumUpToBugged.sumUpTo(SumUpToBugged.java:8)
at ws9a.SumUpToBugged.sumUpTo(SumUpToBugged.java:8)
at ws9a.SumUpToBugged.sumUpTo(SumUpToBugged.java:8)
at ws9a.SumUpToBugged.sumUpTo(SumUpToBugged.java:8)
at ws9a.SumUpToBugged.main(SumUpToBugged.java:13)

Process finished with exit code 1
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Recall: Stack & Heap
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A Stack Trace
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Recall: Stack & Heap
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0n These boxes can contain one of:
- A primitive value (of a primitive type)

- boolean
- byte
- char
- short
- int
- long
- float
- double

- A pointer to an object on the Heap (of a reference type)

Values on the Stack

Boxes (and values in them)
only exist for duration of
method call.
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Recall: Stack & Heap
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Heap Values

cell

first

second

42

pair

- Bigger boxes that can contain 
multiple smaller boxes

- Arrays or regular Objects
- Both inherit from Object anyway

- Usually created with “new”
- But also String constants, 

autoboxing (next)
- Exist as long as something

points to them

Heap

someFun

Stack



Autoboxing
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public class Cell<T> {

   T value;

}

Recall: Type Erasure

public class Cell {

   Object value;

}

is really

This means T has to be a reference type – 
primitive types don’t have methods, 
including equals and toStringCell<Integer>

Cell<int>
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05

Primitive Type Reference Type

boolean Boolean

byte Byte

char Character

short Short

int Integer

long Long

float Float

double Double

14

Wrapper Types
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int i = 5;

Integer j = i;

int k = j;

Integer m = j;

i = 3;

j = i;

m = i;

nullm
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Wrapper Types
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Wrapper Types
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int i = 5;

Integer j = i;

int k = j;

Integer m = j;
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j = i;

m = i;
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“auto-unboxing”
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Wrapper Types
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Wrapper Types
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Wrapper Types
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Wrapper Types
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Wrapper Types
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Wrapper Types

30/04/2025School of Computing    |     COMP1110/6710 2025 S1

int i = 5;

Integer j = i;

int k = j;

Integer m = j;

i = 3;

j = i;

m = i;

0

null

i

j

k

value

5

5
someFun

nullm

3

value

3

value

3

?

“auto-boxing”
equals

==



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) 
CRICOS PROVIDER CODE: 00120C

Boxing – creating a heap-value that stores a primitive value

Unboxing – retrieving a primitive value from a wrapper value

Auto-Boxing – the idea that Java does this for you automatically

Just because its automated does not mean you don’t have to be aware, 
see: equals vs ==

23

Autoboxing - Summary
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Lambdas & 
Functional 
Interfaces
Or: why there is a difference between

.apply and .test
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- Function<T,R>

- BiFunction<T,U,R>

- Predicate<T>

- BiPredicate<T,U>

Function Types
What we’ve seen so far

public interface Function<T,R> {
   R apply(T t);
}

public interface BiFunction<T,U,R> {
   R apply(T t, U u);
}

public interface Predicate<T> {
   boolean test(T t);
}

“Functional Interfaces”
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Are interfaces with a single abstract instance method (i.e. not default, 
not static).

Java comes with more than those four we saw (see java.util.function), 
and you can write your own.

Why Predicate<T> and not Function<T, Boolean> ?

➔ Boxing:    Predicate<T>.test has return type boolean

26

Functional Interfaces
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public interface Function<T,R> {
   R apply(T t);
}

public interface Predicate<T> {
   boolean test(T t);
}
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public interface MyFun<T> {

  List<T> append(T element);

}

…

List<String> foo(MyFun<String> fun) {

  return fun.append(“Hello!”);

}

27

Functional Interfaces
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public interface MyFun<T> {

  List<T> append(T element);

}
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Functional Interfaces & Closures
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List<String> foo(MyFun<String> fun) {
  return fun.append(“Hello!”);
}

public MyFun<String> makeMyFun() {

    List<String> l = new ArrayList<>();

    MyFun<String> f = str -> {

      l.add(str);

      return l;

    };

    return f;

}

l

f null
makeMyFun

null

…

…
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Functional Interfaces & Closures
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public interface MyFun<T> {

  List<T> append(T element);

}
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Functional Interfaces & Closures
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public interface MyFun<T> {

  List<T> append(T element);

}
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Functional Interfaces & Closures
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List<String> foo(MyFun<String> fun) {
  return fun.append(“Hello!”);
}

public MyFun<String> makeMyFun() {

    List<String> l = new ArrayList<>();

    MyFun<String> f = str -> {

      l.add(str);

      return l;

    };

    return f;

}

…

…

…

…

Returned value

How do we get to l?
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public interface MyFun<T> {

  List<T> append(T element);

}

32

Functional Interfaces & Closures
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List<String> foo(MyFun<String> fun) {
  return fun.append(“Hello!”);
}

public MyFun<String> makeMyFun() {

    List<String> l = new ArrayList<>();

    MyFun<String> f = str -> {

      l.add(str);

      return l;

    };

    return f;

}

l

f null
makeMyFun

null

…

…

l

This is a “closure”

“Closures” capture part
of the stack on the heap,
to make it possible to use
later.
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public interface MyFun<T> {

  List<T> append(T element);

}
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Functional Interfaces & Closures
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List<String> foo(MyFun<String> fun) {
  return fun.append(“Hello!”);
}

l

f null
makeMyFun

null

…

…

l

Imperative Programming

Each variable represents a single slot 
whose content can be accessed and 
changed throughout its scope

What we’ve said before:
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public interface MyFun<T> {

  List<T> append(T element);

}
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Functional Interfaces & Closures
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List<String> foo(MyFun<String> fun) {
  return fun.append(“Hello!”);
}

l

f null
makeMyFun

null

…

…

l

Java’s Solution

When there are multiple slots representing 
the same variable, they need to be “final” or 
“effectively final”, meaning you can only 
assign the variable once.
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Closures capture part of the stack, by effectively copying the relevant 
boxes when the closure is created

To make this work out, the boxes need to be “read-only”, which Java 
calls “final” or “effectively” final.

In a wider sense, closures capture any sort of state apart from the 
arguments of a function ➔ Objects are big closures, too.

35

Closures - Summary
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