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Motivation

Huge market for microcontrollers (µCs):

• SIA forecast: 8-bit µC market reaches $5.32 billion in 2006

• PIC Microchip sold 1 billion units between 2004 and 2005

µCs neglected by research community as “assembly
language playground”

Productivity considerations require move to high-level
languages

Compiler optimizations for µCs required
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Partitioned what???

2N − 1 a

...

0

instruction encoding:

OPCODE f

MOVWF f

Operand: 0 ≤ f ≤ 2N − 1
Operation: (W)→ f

• effective address f encoded in N bits

• large instruction word sizes increase code size
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Partitioned Address Space

2
k banks:

2N − 1 a

...
0 1 2k − 1

X X X a
...

... · · · · · · · · · ...
0 0 0 0

• requires address disambiguation mechanism

• reduces effective address to N − k bits

• increases memory space without increasing address bus

• reduces instruction word size and memory footprint
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Address Disambiguation

2N − 1 a

...
0 1 7

X X X a
...

... · · · · · · · · · ...
0 0 0 0

• CPU can access one bank at a time

• active bank stored in CPU bank register

• bank selection instruction BSL <nr> switches banks

• access of entity a: BSL 7

MOVWF X
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Bank Selection Instruction Placement

bank 0: A,B
bank 1: X,Y,Z

CFG

LD X

LD Y

ST Y

LD A

LD Z

ST B

ST X

speed

BSL 1

LD X

LD Y

ST Y

LD A

LD Z

BSL 0

ST B

BSL 1

BSL 0

BSL 1

ST X

space

BSL 1

LD X

LD Y

ST Y

BSL 0

LD A

LD Z

BSL 0

ST B

BSL 1

ST X
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Bank Switching in Prevalent µC Architectures

Used for data, code, and CPU registers

• Motorola 68HC11
• PIC 12*, 14* and 16* families
• Intel 8051 family
• Ubicom SX, Toshiba T900
• partitioned SRAMs for WSNs

Significant potential for compiler improvement

• to reduce bank switching overhead
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Problem Statement

Minimize number of bank selection instructions of a
program for

• a static allocation of variables to banks

• a cost metric (speed, space, etc.)

• a fixed instruction schedule (no instruction re-ordering).
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Outline of Solution

Optimization within basic blocks

Intra-procedural optimization

• modelled as a discrete optimization problem

Extension to the interprocedural case

Mapping of the discrete optimization problem to a solver
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Basic Block Optimization

Performs linear scan of a basic block,
memorizing the state of the bank selection register

Inserts bank selection statements except

• before the first bank-sensitive statement

• after the last bank-sensitive statement

Example:

Input: 1 LD (bank 1)X
2 CALL foo
3 LD (bank 0)A
4 ST (bank 1)Y
5 ST (bank 1)Z

Output: b?1 LD X
b?2 CALL foo
03 BSL 0; LD A
14 BSL 1; ST Y
15 ST Z
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Intra-Procedural Optimization

Introduce controlling variables P and Q for each basic block

Domain: D = {0, . . . , 2k − 1, b?}
• P specifies bank register state upon entry (guarantee)

• Q specifies bank register state upon exit (obligation)

Discrete optimization “attaches” to controlling variables

P

...

Q
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Controlling Variables on Bank-Sensitive Basic Blocks

P = 0P

Q

LD (bank 1) Z

ST (bank 0) B

LD (bank 1) Z

ST (bank 0) B

Q = 1

P = 1

LD (bank 1) Z

ST (bank 0) B

Q = 1

BSL 1 BSL 1

BSL 1

Cost function n-cost(P )
• accounts for the costs at the entry of the basic block

Cost function e-cost(Q)
• accounts for the costs at the exit of the basic block
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Controlling Variables on Transparent Basic Blocks

Q = 1

P = 1

Q = 1

P = 0P

Q

BSL 1

Cost function t-cost(P, Q)
• accounts for the costs at a transparent basic block

Cost functions can model arbitrary costs (speed, space,
power consumption, ...)
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Correctness Criteria for Intra-Procedural Optimization

“adjacent controlling variables have to agree”:

forall edges (u,v): (Pv 6= b?)⇒ (Qu = Pv)

ST (bank 0) B

LD (bank 1) Z

Pv = 1

Qu = 1

BSL 1
ST (bank 0) B

LD (bank 1) Z

Pv = 1

Qu = 0

bank 0 active!
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The Bank Selection Placement Optimization Problem

Objective function f accounts for the costs of basic blocks

Controlling variables determine costs of transformations

s.t.∀u ∈ V : Pu, Qu ∈ D

Ps = b?

∀(u, v) ∈ E : (Pv 6= b?)⇒ (Qu = Pv)

min f =
∑

u∈V

costu(Pu, Qu)

=
∑

u∈S

n-costu(Pu) +
∑

u∈S

e-costu(Qu)

︸ ︷︷ ︸

bank-sensitive

+
∑

u∈T

t-costu(Pu, Qu)

︸ ︷︷ ︸

transparent
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Interprocedural Extension

Bank selection instructions can be hoisted across call sites

Additional placement of BSL instructions:
• at the entry/exit of a subroutine, and before a call

Caller/Callee correctness constraints:

Ps

Callee foo

start

end

CALL foo CALL foo

(Ps 6= b?) ⇒ (Ps = Pi)

(Qi 6= b?) ⇒ (Qi = Qe)

Caller 1 Caller k

Q1

P1 Pk

Qk

Qe

• one discrete optimization problem for the whole program
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Experimental Results

Implementation of optimizations for a PIC16F877A µC
• RISC-based Harvard architecture
• 8-bit data bus
• 4 data banks, 368 bytes data memory

Evaluated optimizations for
• MiBench (as applicable),
• DSPStone (as applicable),
• a µC real-time kernel, and
• µC driver routines

Reference point: HI-TECH PICC high-performance C-compiler
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Experimental Results (speedup)
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Experimental Results (code size reduction)
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Optimally solved procedures, all of MiBench

CFG CFG (simpl.) PBQP
Benchmark proc node edge node edge P ,Q optproc

a
u
to

m
. basicmath 6 97 143 174 220 348 6 100.0%

bitcount 15 88 102 124 138 248 13 86.7%
qsort 4 40 55 59 74 118 3 75.0%
susan 19 698 1102 1104 1509 2208 11 57.9%

co
n
su

m
.

jpeg 375 6998 10255 10948 14211 21896 262 69.9%
lame 213 5720 8510 8735 11528 17470 148 69.5%
mad 1 3 2 3 2 6 1 100.0%
tiff 510 10735 15668 15678 20628 31356 320 62.7%
typeset 399 20650 31675 31322 42348 62644 251 62.9%

n
w dijkstra 12 138 184 198 246 396 10 83.3%

patricia 5 160 227 217 285 434 2 40.0%

o
ffi

ce

ghostscript 3551 47967 65967 67117 85120 134234 2734 77.0%
ispell 107 2368 3611 3757 5001 7514 51 47.7%
rsynth 53 1326 2012 2074 2760 4148 32 60.4%
sphinx 684 10597 14895 15732 20043 31464 522 76.3%
stringsearch 13 176 240 262 326 524 7 53.8%

se
cu

r.

blowfish 14 237 344 373 483 746 13 92.9%
pgp 320 7381 10959 11207 14788 22414 195 60.9%
rijndael 7 157 223 220 286 440 2 28.6%
sha 7 56 70 78 92 156 7 100.0%

te
le

c.

adpcm 5 79 105 103 132 206 3 60.0%
CRC32 4 32 41 47 56 94 3 75.0%
FFT 6 83 114 124 156 248 6 100.0%
gsm 65 1589 2244 2097 2754 4194 44 67.7%

all 6395 117375 168748 171753 223186 343506 4646 72.7%
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Solve times wrt. the number of banks, all of MiBench

m=2 m=4 m=8 m=16 m=32
Number of banks

1

10

100

1000

10000
Pr

ob
le

m
 s

ol
ve

 ti
m

e 
in

 s
ec

on
ds

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.21



SAPLING Meeting, Nov. 11, 2006

Solve times wrt. the number of CFG edges, all of MiBench
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Summary

Devised algorithm to minimize bank selection instructions for

• a given instruction order

• and a given data partitioning

Formulated bank selection instruction placement as a
discrete optimization problem

Optimization objectives are formulated as cost metrics

Experimental results for PIC16F877A µ-controller:

• code size reduction between 2.7% and 18.2%

• speedup between 5.1% and 28.8%

• 100% of PIC benchmarks solved optimally, 72% of MiBench
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Toolchain

Extended

Assembly
Prog. Info

Pruner Optimizer

Simulator

Program
C− C−Compiler

Disassembler

Extended

Assembly

Opt.

Binary

Banked

Binary

Assembly
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