
SAPLING Meeting, Nov. 11, 2006

Minimizing Bank Selection Instructions for

Partitioned Memory Architectures

Bernhard Scholz1, Bernd Burgstaller1, and Jingling Xue2

1The University of Sydney

2University of New South Wales

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.1

SAPLING Meeting, Nov. 11, 2006

Motivation

Huge market for microcontrollers (µCs):

• SIA forecast: 8-bit µC market reaches $5.32 billion in 2006

• PIC Microchip sold 1 billion units between 2004 and 2005

µCs neglected by research community as “assembly
language playground”

Productivity considerations require move to high-level
languages

Compiler optimizations for µCs required

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.2

SAPLING Meeting, Nov. 11, 2006

Partitioned what???

2N − 1 a

...

0

instruction encoding:

OPCODE f

MOVWF f

Operand: 0 ≤ f ≤ 2N − 1
Operation: (W)→ f

• effective address f encoded in N bits

• large instruction word sizes increase code size

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.3

SAPLING Meeting, Nov. 11, 2006

Partitioned Address Space

2
k banks:

2N − 1 a

...
0 1 2k − 1

X X X a
...

... · · · · · · · · · ...
0 0 0 0

• requires address disambiguation mechanism

• reduces effective address to N − k bits

• increases memory space without increasing address bus

• reduces instruction word size and memory footprint

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.4

SAPLING Meeting, Nov. 11, 2006

Address Disambiguation

2N − 1 a

...
0 1 7

X X X a
...

... · · · · · · · · · ...
0 0 0 0

• CPU can access one bank at a time

• active bank stored in CPU bank register

• bank selection instruction BSL <nr> switches banks

• access of entity a: BSL 7

MOVWF X

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.5

SAPLING Meeting, Nov. 11, 2006

Bank Selection Instruction Placement

bank 0: A,B
bank 1: X,Y,Z

CFG

LD X

LD Y

ST Y

LD A

LD Z

ST B

ST X

speed

BSL 1

LD X

LD Y

ST Y

LD A

LD Z

BSL 0

ST B

BSL 1

BSL 0

BSL 1

ST X

space

BSL 1

LD X

LD Y

ST Y

BSL 0

LD A

LD Z

BSL 0

ST B

BSL 1

ST X

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.6

SAPLING Meeting, Nov. 11, 2006

Bank Switching in Prevalent µC Architectures

Used for data, code, and CPU registers

• Motorola 68HC11
• PIC 12*, 14* and 16* families
• Intel 8051 family
• Ubicom SX, Toshiba T900
• partitioned SRAMs for WSNs

Significant potential for compiler improvement

• to reduce bank switching overhead

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.7

SAPLING Meeting, Nov. 11, 2006

Problem Statement

Minimize number of bank selection instructions of a
program for

• a static allocation of variables to banks

• a cost metric (speed, space, etc.)

• a fixed instruction schedule (no instruction re-ordering).

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.8

SAPLING Meeting, Nov. 11, 2006

Outline of Solution

Optimization within basic blocks

Intra-procedural optimization

• modelled as a discrete optimization problem

Extension to the interprocedural case

Mapping of the discrete optimization problem to a solver

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.9

SAPLING Meeting, Nov. 11, 2006

Basic Block Optimization

Performs linear scan of a basic block,
memorizing the state of the bank selection register

Inserts bank selection statements except

• before the first bank-sensitive statement

• after the last bank-sensitive statement

Example:

Input: 1 LD (bank 1)X
2 CALL foo
3 LD (bank 0)A
4 ST (bank 1)Y
5 ST (bank 1)Z

Output: b?1 LD X
b?2 CALL foo
03 BSL 0; LD A
14 BSL 1; ST Y
15 ST Z

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.10

SAPLING Meeting, Nov. 11, 2006

Intra-Procedural Optimization

Introduce controlling variables P and Q for each basic block

Domain: D = {0, . . . , 2k − 1, b?}
• P specifies bank register state upon entry (guarantee)

• Q specifies bank register state upon exit (obligation)

Discrete optimization “attaches” to controlling variables

P

...

Q

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.11

SAPLING Meeting, Nov. 11, 2006

Controlling Variables on Bank-Sensitive Basic Blocks

P = 0P

Q

LD (bank 1) Z

ST (bank 0) B

LD (bank 1) Z

ST (bank 0) B

Q = 1

P = 1

LD (bank 1) Z

ST (bank 0) B

Q = 1

BSL 1 BSL 1

BSL 1

Cost function n-cost(P)
• accounts for the costs at the entry of the basic block

Cost function e-cost(Q)
• accounts for the costs at the exit of the basic block

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.12

SAPLING Meeting, Nov. 11, 2006

Controlling Variables on Transparent Basic Blocks

Q = 1

P = 1

Q = 1

P = 0P

Q

BSL 1

Cost function t-cost(P, Q)
• accounts for the costs at a transparent basic block

Cost functions can model arbitrary costs (speed, space,
power consumption, ...)

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.13

SAPLING Meeting, Nov. 11, 2006

Correctness Criteria for Intra-Procedural Optimization

“adjacent controlling variables have to agree”:

forall edges (u,v): (Pv 6= b?)⇒ (Qu = Pv)

ST (bank 0) B

LD (bank 1) Z

Pv = 1

Qu = 1

BSL 1
ST (bank 0) B

LD (bank 1) Z

Pv = 1

Qu = 0

bank 0 active!

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.14

SAPLING Meeting, Nov. 11, 2006

The Bank Selection Placement Optimization Problem

Objective function f accounts for the costs of basic blocks

Controlling variables determine costs of transformations

s.t.∀u ∈ V : Pu, Qu ∈ D

Ps = b?

∀(u, v) ∈ E : (Pv 6= b?)⇒ (Qu = Pv)

min f =
∑

u∈V

costu(Pu, Qu)

=
∑

u∈S

n-costu(Pu) +
∑

u∈S

e-costu(Qu)

︸ ︷︷ ︸

bank-sensitive

+
∑

u∈T

t-costu(Pu, Qu)

︸ ︷︷ ︸

transparent

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.15

SAPLING Meeting, Nov. 11, 2006

Interprocedural Extension

Bank selection instructions can be hoisted across call sites

Additional placement of BSL instructions:
• at the entry/exit of a subroutine, and before a call

Caller/Callee correctness constraints:

Ps

Callee foo

start

end

CALL foo CALL foo

(Ps 6= b?) ⇒ (Ps = Pi)

(Qi 6= b?) ⇒ (Qi = Qe)

Caller 1 Caller k

Q1

P1 Pk

Qk

Qe

• one discrete optimization problem for the whole program
Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.16

SAPLING Meeting, Nov. 11, 2006

Experimental Results

Implementation of optimizations for a PIC16F877A µC
• RISC-based Harvard architecture
• 8-bit data bus
• 4 data banks, 368 bytes data memory

Evaluated optimizations for
• MiBench (as applicable),
• DSPStone (as applicable),
• a µC real-time kernel, and
• µC driver routines

Reference point: HI-TECH PICC high-performance C-compiler

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.17

SAPLING Meeting, Nov. 11, 2006

Experimental Results (speedup)

ad
pc

m

ba
sic

m
ath

FFT lcd

m
atr

ix

rtk
er

ne
l

sh
a

all

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

Sp
ee

du
p

(%
)

Speed
Space
Mixed

Benchmark Programs

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.18

SAPLING Meeting, Nov. 11, 2006

Experimental Results (code size reduction)

ad
pc

m

ba
sic

m
ath

FFT lcd

m
atr

ix

rtk
er

ne
l

sh
a

all

0

2

4

6

8

10

12

14

16

18

20

Si
ze

 R
ed

uc
tio

n
(%

)
Speed
Space
Mixed

Benchmark Programs

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.19

SAPLING Meeting, Nov. 11, 2006

Optimally solved procedures, all of MiBench

CFG CFG (simpl.) PBQP
Benchmark proc node edge node edge P ,Q optproc

a
u
to

m
. basicmath 6 97 143 174 220 348 6 100.0%

bitcount 15 88 102 124 138 248 13 86.7%
qsort 4 40 55 59 74 118 3 75.0%
susan 19 698 1102 1104 1509 2208 11 57.9%

co
n
su

m
.

jpeg 375 6998 10255 10948 14211 21896 262 69.9%
lame 213 5720 8510 8735 11528 17470 148 69.5%
mad 1 3 2 3 2 6 1 100.0%
tiff 510 10735 15668 15678 20628 31356 320 62.7%
typeset 399 20650 31675 31322 42348 62644 251 62.9%

n
w dijkstra 12 138 184 198 246 396 10 83.3%

patricia 5 160 227 217 285 434 2 40.0%

o
ffi

ce

ghostscript 3551 47967 65967 67117 85120 134234 2734 77.0%
ispell 107 2368 3611 3757 5001 7514 51 47.7%
rsynth 53 1326 2012 2074 2760 4148 32 60.4%
sphinx 684 10597 14895 15732 20043 31464 522 76.3%
stringsearch 13 176 240 262 326 524 7 53.8%

se
cu

r.

blowfish 14 237 344 373 483 746 13 92.9%
pgp 320 7381 10959 11207 14788 22414 195 60.9%
rijndael 7 157 223 220 286 440 2 28.6%
sha 7 56 70 78 92 156 7 100.0%

te
le

c.

adpcm 5 79 105 103 132 206 3 60.0%
CRC32 4 32 41 47 56 94 3 75.0%
FFT 6 83 114 124 156 248 6 100.0%
gsm 65 1589 2244 2097 2754 4194 44 67.7%

all 6395 117375 168748 171753 223186 343506 4646 72.7%

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.20

SAPLING Meeting, Nov. 11, 2006

Solve times wrt. the number of banks, all of MiBench

m=2 m=4 m=8 m=16 m=32
Number of banks

1

10

100

1000

10000
Pr

ob
le

m
 s

ol
ve

 ti
m

e
in

 s
ec

on
ds

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.21

SAPLING Meeting, Nov. 11, 2006

Solve times wrt. the number of CFG edges, all of MiBench

0 500 1000 1500 2000

Number of edges

0

50

100

150

200

250

300
E

xe
cu

tio
n

tim
e

in
 m

ill
is

ec
on

ds

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.22

SAPLING Meeting, Nov. 11, 2006

Summary

Devised algorithm to minimize bank selection instructions for

• a given instruction order

• and a given data partitioning

Formulated bank selection instruction placement as a
discrete optimization problem

Optimization objectives are formulated as cost metrics

Experimental results for PIC16F877A µ-controller:

• code size reduction between 2.7% and 18.2%

• speedup between 5.1% and 28.8%

• 100% of PIC benchmarks solved optimally, 72% of MiBench

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.23

SAPLING Meeting, Nov. 11, 2006

Toolchain

Extended

Assembly
Prog. Info

Pruner Optimizer

Simulator

Program
C− C−Compiler

Disassembler

Extended

Assembly

Opt.

Binary

Banked

Binary

Assembly

Minimizing Bank Selection Instructions for Partitioned Memory Architectures – p.24

	@
	Motivation
	Partitioned what???
	Partitioned Address Space
	Address Disambiguation
	Bank Selection Instruction Placement
	Bank Switching in Prevalent $mu $C Architectures
	Problem Statement
	Outline of Solution
	Basic Block Optimization
	Intra-Procedural Optimization
	Controlling Variables on Bank-Sensitive Basic Blocks
	Controlling Variables on Transparent Basic Blocks
	Correctness Criteria for Intra-Procedural Optimization
	makebox {The Bank Selection Placement Optimization Problem}
	Interprocedural Extension
	Experimental Results
	Experimental Results (speedup)
	makebox {Experimental Results (code size reduction)}
	makebox {Optimally solved procedures, all of MiBench}
	Solve times wrt.~the number of banks, all of MiBench
	makebox {Solve times wrt.~the number of CFG edges, all of MiBench}
	Summary
	Toolchain

