
Towards improved abstractions for

programming language processor specifications

Shirley Goldrei

Programming Languages Research Group

Macquarie University

SAPLING 11th November 2006

• Premise: Domain Specific Languages

• improve productivity

• reduce programming errors

• leverage technology improvements

• Ideal goal: Make it possible for domain

experts to specify domain specific

languages without needing to be

compiler experts

• Strategy: Generate compilers from high

level specifications

Motivation

• Specifying language semantics

• Specifying semantics preserving

transformations

• Compilation is an example of semantics

preserving transformations (see GHC

Haskell compiler)

• Abstract Syntax (input and output)

(i.e. assumes a predefined parsing and

unparsing)

Context

Ways of Specifying Language Semantics

 Attribute Grammar

• Syntax Driven
• Specify attribute

dependencies
• Tree walks are

inferred
• Output trees are

constructed

 Term Rewriting

• Syntax Driven

• Tree walks are

either fixed or

explicitly defined

• Input tree is

transformed into

output tree in

place

4

Two little (domain specific) languages…

• Single domain

• Context sensitive semantics

• Non-trivial transformation

• Require computation to preserve semantics

• Multiple passes required

5

PEN UP

 DRAW 5

NEP

PEN DOWN

 DRAW 3

 NEWLINE

NEP

SPLD1

6

5 1 MOVETO

3 DRAW

SPLD2

7

3

5

1

MOVETO

DRAW

SPLD2

8

9

Research Questions

• Can we devise an improved abstraction?
• Incorporate strengths of existing systems
• Inferred traversals
• “conceptually” in-place rewrites

• Improve expressivity of semantic preservation
• explicit notions of input and output grammars
• “Type safety” (where required) in terms of input and output

grammars
• Oh and while we are at it… Can we deal with graphs and

not just trees, without adding too much cognitive overload?

10

Research Questions

• Relationship between transformation and mechanism features?
• Along what dimensions can we measure a syntactic

or semantic gap between languages?
• What can we say about how “similar” or “different” languages are?

How similar are say, Pascal and C? What about C++ and Java?
• Can we formalise our intuition?

(e.g. develop a partial order or measure)
• How does the similarity of the languages relate to the usefulness of

the transformation tools
• Understanding the nature of the semantic gap will help to inform the

development of an improved abstraction

11

Experiments

• Familarisation: Implement translations in a

number of different systems

(e.g. TXL, Stratego/XT, UUAG, JastAdd, Eli)

• Understand performance implications:

Translate several thousand line real world

application

12

• Develop a framework for analysing

programming language translation tasks

• Comparing alternate systems against the

framework

• Develop an improved abstraction for

programming language processor specification

Plan

13

Thank You

Comments and questions welcomed

14

