High-Performance Computing
By Advanced Stream Processing Using GPU

Sean LEE

seanl@cse.unsw.edu.au

Programming Languages and Systems
School of ComputerScience and Engineering
University of New South Wales

BACKGROUND

/’

L

>

Time

performance growth of GPUs and CPUs

BACKGROUND

BACKGROUND

performance growth of GPUs and CPUs

BACKGROUND

2-A

BACKGROUND

performance growth of GPUs and CPUs

Generate Clip to Apply Rasterise Draw
Geometry Viewport Textures Geometry Pixels
S - - s, N S S - .7
' S @ N < l
| — - A AN 7 ~ ~ I
-~ AN 4 AN I ~
1 - N s N ~So |
lip t i
Generate Clip to [y| Rasterise Fragment Shader Programs
Geometry Viewport Geometry
(b)

(a) fixed non-programmable pipelines and (b) programmable pipelines

BACKGROUND

WHAT DO | WANT TO DO WITH GPU?

WHAT DO | WANTTO DO WITH GPU?

WHAT DO | WANT TO DO WITH GPU?
NDP (Nested Data Parallelism) on GPU.

WHAT DO | WANTTO DO WITH GPU?

3-A

NDP (Nested Data Parallelism) on GPU.

Why?

e GPUscannothandle nested orirregular data structure
such assparse matrices and nested arrays.
Their data structure is texture-based.

e There are algorithmsthat can be efficientlyimplemented
only with nested data structure.

e Manualtransformation of nested data structure is
error-prone and a tedious task.

WHATDO | WANTTO DO WITH GPU?

3-B

WHAT DO | WANT TO DO WITH GPU?

NDP (Nested Data Parallelism) on GPU.

In other words:

e Enhance the programmability of graphics hardware to

the state where:
=» the irregulardata processingissupported,

=> the compiler distinguishesthe code torun on GPUs and the
code torun on GPUs (uniform approach), and
=> the hardware virtualisationis enabled.

e Smoothintegration of the enhanced programma bility
into the graphical applications as well as
general-purpose computations.

e Achieve high-performance stream processing inlow cost.

WHATDO | WANTTO DO WITH GPU?

WHAT DO | WANT TO DO WITH GPU?

Other Programming Systems on GPU:

Brook | Cg | GLSL | Sh

Nested Data Parallelism X X X X
C/C++-like syntax v v v v

Level of Abstraction high | Low | Low | Hig
Standalone Compiler v v X v
Uniform Approach X X X X
Hardware Virtualisation v X X X
Irregular Data Processing Support X X X X

WHATDO | WANTTO DO WITH GPU?

THE APPROACH

GHC

[

NDP Framework

NDP on GPU

|

AMD e

pentium®
EEEEEEE
EEEEEEE

AthlonX2

THE APPROACH

THE APPROACH

e Implement a C library for NDP on GPU.
The library willinclude allthe primitivesre-
quired NDP operations on GPU.

GHC

LT

NDP Framework

NDP on GPU

AthlonX2

&

pentium®

THE APPROACH

6-A

THE APPROACH

e Implement a C library for NDP on GPU.
The library willinclude allthe primitivesre-
quired NDP operations on GPU.

e Develop techniques to tackle the issues
such as hardware virtualisation and uni-
form approach.

GHC

[

NDP Framework

NDP on GPU

AthlonX2

&

pentium®

THE APPROACH

6-B

THE APPROACH

e Implement a C library for NDP on GPU.
The library willinclude allthe primitivesre-
quired NDP operations on GPU.

e Develop techniques to tackle the issues
such as hardware virtualisation and uni-
form approach.

GHC

LT T]

NDP Framework

NDP on GPU

e The library will be hooked up to NDP

framework, which is being implemented
in GHC.

AthlonX2

&

pentium®

THE APPROACH

6-C

GHC

[

NDP Framework

NDP on GPU

AMD

AthlonX2

pentium’

THE APPROACH

On Haskell:
filter (\x->x ‘mod‘ 2 == 1) input
On C:
filter (
[\x->x ‘mod* == 1],

input, inputsize, output

THE APPROACH

THE APPROACH

OnCg:

float4 main (... data from the host CPU ...) : COLOR {
local data declaration ...
GHC result.a = 0;
index[0] = (1W » floor (coord.y) + floor (coord.x)) =* s;

1 rj rj r for (i =0; i < s ; i++, index[0]++) {

if (index[0] < numElems) {

NDP Framework index[1] index[0];

index[2] = 0;

while (index[1l] >= fbWidth) {

NDP on GPU

index[1] -= fbWidth;
l//////"\\\\\\\ index[2]++;
}
(:g C V1l = (texRECT (elements, float2 (index[1l], index[2]))).r;
if (int (V1) 8 2 == 1) {
if (result.a == 0) result.r = V1;
else if (result.a == 1) result.g = V1;
AMD ' # else if (result.a == 2) result.b = VI1;
result.at++;
o | e }
) }
}
return result;

THE APPROACH

libndpgpu:
Implemented operations:

e scanl, scanlsS, scanr, scanrS
e foldl, foldlsS, foldr, foldrS
e map

o filter

WHERE AM |?

libndpgpu:
Implemented operations:

e scanl, scanlsS, scanr, scanrS
e foldl, foldlsS, foldr, foldrS
e map

o filter

...

1/0 Registers, Texture Maps and Constants

Shader 1 Shader 1 Shader 1
1 1 ® o o '
Processor Processor Processori]

\ Local
Register

File

Kernel Dispatch

modern GPU architecture

WHERE AM |?

Benchmarks:
e Intel Core Duo 2.0GHz, 1 GB DDR2 RAM
e NVIDIA GeForce Go 7400 TurboCache 256MB

WHERE AM |?

10

Benchmarks:

WHERE AmM 1?

e Intel Core Duo 2.0GHz, 1 GB DDR2 RAM

e NVIDIA GeForce Go 7400 TurboCache 256 MB

cost (secs)

1.000000

0.100000 +

0.010000+

0.001000 +

0.000100+

0.000010+

[shader compile

B data tranfer to GPU
I execution on GPU
B execution on CPU

map filter

WHERE AM |?

10-A

CHALLENGES AND FUTURE WORKS (SHORT TERM)

CHALLENGES AND FUTURE W ORKS (SHORT TERM)

11

CHALLENGES AND FUTURE WORKS (SHORT TERM)
Preprocessor:
e Profile based dynamic Cg assembly generation.
e Assembly level optimisation.

e Translation of functions passed from Haskelllevelto lower
level asinputsto higher-orderfunctions.

CHALLENGES AND FUTURE W ORKS (SHORT TERM) 11-A

CHALLENGES AND FUTURE WORKS (SHORT TERM)

Preprocessor:
e Profile based dynamic Cg assembly generation.
e Assembly level optimisation.

e Translation of functions passed from Haskelllevelto lower
level asinputsto higher-orderfunctions.

Data organisation and transfer:
e Reduce the data tranfer cost.

e Handle arrays whose number of elements are greater
than the maximum size of textures using multi-p ass
strategy.

CHALLENGES AND FUTURE W ORKS (SHORT TERM)

11-8

CHALLENGES AND FUTURE WORKS (SHORT TERM)
More bulk array operations:

e permute, zip and its variations, zipWidth and its variations

CHALLENGES AND FUTURE W ORKS (SHORT TERM)

12

CHALLENGES AND FUTURE WORKS (SHORT TERM)
More bulk array operations:

e permute, zip and its variations, zipWidth and its variations

Release:

e Release it as a complete library by July 2007.

CHALLENGES AND FUTURE W ORKS (SHORT TERM) 12-A

QUESTIONS?

QUESTIONS?

13

