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NDP (Nested Data Parallelism) on GPU.

Why?

e GPUscannothandle nested orirregular data structure
such assparse matrices and nested arrays.
Their data structure is texture-based.

e There are algorithmsthat can be efficientlyimplemented
only with nested data structure.

e Manualtransformation of nested data structure is
error-prone and a tedious task.
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WHAT DO | WANT TO DO WITH GPU?

NDP (Nested Data Parallelism) on GPU.

In other words:

e Enhance the programmability of graphics hardware to

the state where:
=» the irregulardata processingissupported,

=> the compiler distinguishesthe code torun on GPUs and the
code torun on GPUs (uniform approach), and
=> the hardware virtualisationis enabled.

e Smoothintegration of the enhanced programma bility
into the graphical applications as well as
general-purpose computations.

e Achieve high-performance stream processing inlow cost.
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WHAT DO | WANT TO DO WITH GPU?

Other Programming Systems on GPU:

Brook | Cg | GLSL | Sh

Nested Data Parallelism X X X X
C/C++-like syntax v v v v

Level of Abstraction high | Low | Low | Hig
Standalone Compiler v v X v
Uniform Approach X X X X
Hardware Virtualisation v X X X
Irregular Data Processing Support X X X X
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e Implement a C library for NDP on GPU.
The library willinclude allthe primitivesre-
quired NDP operations on GPU.
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THE APPROACH

e Implement a C library for NDP on GPU.
The library willinclude allthe primitivesre-
quired NDP operations on GPU.

e Develop techniques to tackle the issues
such as hardware virtualisation and uni-
form approach.

GHC
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e The library will be hooked up to NDP

framework, which is being implemented
in GHC.
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On Haskell:
filter ( \x->x ‘mod‘ 2 == 1 ) input
On C:
filter (
[ \x->x ‘mod* == 1],

input, inputsize, output
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THE APPROACH

OnCg:

float4 main ( ... data from the host CPU ... ) : COLOR {
local data declaration ...
GHC result.a = 0;
index[0] = ( 1W » floor ( coord.y ) + floor ( coord.x )) =* s;

_1 rj rj r_ for (i =0; i < s ; i++, index[0]++ ) {

if ( index[0] < numElems ) {

NDP Framework index[1] index[0];

index[2] = 0;

while ( index[1l] >= fbWidth ) {

NDP on GPU

index[1] -= fbWidth;
l//////"\\\\\\\ index[2]++;
}
(:g C V1l = ( texRECT ( elements, float2 ( index[1l], index[2] ))).r;
if ( int (V1 ) 8 2 == 1) {
if ( result.a == 0 ) result.r = V1;
else if ( result.a == 1 ) result.g = V1;
AMD ' # else if ( result.a == 2 ) result.b = VI1;
result.at++;
o | e }
) }
}
return result;
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libndpgpu:
Implemented operations:

e scanl, scanlsS, scanr, scanrS
e foldl, foldlsS, foldr, foldrS
e map

o filter
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libndpgpu:
Implemented operations:

e scanl, scanlsS, scanr, scanrS
e foldl, foldlsS, foldr, foldrS
e map

o filter

.........................................................................................

1/0 Registers, Texture Maps and Constants

Shader 1 Shader 1 Shader 1
1 1 ® o o '
Processor Processor Processori ]

\ Local
Register

File

Kernel Dispatch

modern GPU architecture
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Benchmarks:
e Intel Core Duo 2.0GHz, 1 GB DDR2 RAM
e NVIDIA GeForce Go 7400 TurboCache 256MB
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Benchmarks:

WHERE AmM 1?

e Intel Core Duo 2.0GHz, 1 GB DDR2 RAM

e NVIDIA GeForce Go 7400 TurboCache 256 MB

cost (secs)

1.000000

0.100000 +

0.010000+

0.001000 +

0.000100+

0.000010+

[ shader compile

B data tranfer to GPU
I execution on GPU
B execution on CPU

map filter
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CHALLENGES AND FUTURE WORKS (SHORT TERM)
Preprocessor:
e Profile based dynamic Cg assembly generation.
e Assembly level optimisation.

e Translation of functions passed from Haskelllevelto lower
level asinputsto higher-orderfunctions.
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CHALLENGES AND FUTURE WORKS (SHORT TERM)

Preprocessor:
e Profile based dynamic Cg assembly generation.
e Assembly level optimisation.

e Translation of functions passed from Haskelllevelto lower
level asinputsto higher-orderfunctions.

Data organisation and transfer:
e Reduce the data tranfer cost.

e Handle arrays whose number of elements are greater
than the maximum size of textures using multi-p ass
strategy.
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CHALLENGES AND FUTURE WORKS (SHORT TERM)
More bulk array operations:

e permute, zip and its variations, zipWidth and its variations
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CHALLENGES AND FUTURE WORKS (SHORT TERM)
More bulk array operations:

e permute, zip and its variations, zipWidth and its variations

Release:

e Release it as a complete library by July 2007.
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