
Type Inference and Optimisation

for an Impure World

Ben Lippmeier

Australian National University

Type Inference and Optimisation for an Impure World 1

Horray for Compositional Programming

paths = map (\name -> "/" ++ name)

$ filter (\name -> head name /= ’.’)

$ map toLower files

Lists, lambda abstractions and combining forms.

All is right with the world.

Type Inference and Optimisation for an Impure World 2

It’s all fun and games until IO gets involved...

This doesn’t work, the types are all wrong.

map putStr $ map (++ "\n")

$ filter (\name -> head name /= ’.’)

$ getDirectoryContents "."

filter :: (a -> Bool) -> [a] -> [a]

getDirectoryContents

:: String -> IO [String]

Type Inference and Optimisation for an Impure World 3

Forever lifting...

(liftM (map (++ "\n"))

$ liftM (filter (\name -> head name /= ’.’))

$ getDirectoryContents ".")

>>= \ff -> mapM_ putStr ff

• Argh @ IO

• The wrappers needed to use state monads are cluttering up my real

programs.

Type Inference and Optimisation for an Impure World 4

A lack of data dependencies.

readSub :: () -> Int

readSub ()

= let a = readInt ()

b = readInt ()

in a - b

... but what is forcing the two let bindings to be evaluated in the right order?

(Answer: not much).

• Problems for complier optimisations.

• Problems for lazy evaluation.

Type Inference and Optimisation for an Impure World 5

Code motion.

map f (map g xs) = map (f . g) xs

• Converting the first form to the second eliminates the intermediate list.

• It’s a specific example of a ’code motion’ style optimisation.

• Others are let-floating, full-laziness, case merging, deforestation...

• many such optimisations are used in GHC.

Type Inference and Optimisation for an Impure World 6

... but it only works for pure expressions.

let a = 0

in map (\x -> printInt a)

$ map (\x -> a := a + x) [1..100]

Does not do the same thing as:

let a = 0

in map ((\x -> printInt a) . (\x -> a := a + x))

[1..100]

print :: Int -> ()

(:=) :: Int -> Int -> ()

Type Inference and Optimisation for an Impure World 7

Solution 1: Thread the world

We could introduce the required data dependency by threading a dummy

state token through our program.

readSubW :: () -> World -> (World , Int)

readSubW () w0

= let (w1 , a) = readIntW () w0

(w2 , b) = readIntW () w1

in (w2 , a - b)

This works, but it changes the shape of our function’s type and clutters the

program. (This is what Clean does)

Type Inference and Optimisation for an Impure World 8

Solution 2: Hide the state token in a monad

We could hide the state token behind a type definition and some

combinators, but it doesn’t really solve the problem.

data World

type IO a = World -> (World , a)

readSubM :: () -> IO Int

readSubM ()

= do a <- readIntM ()

b <- readIntM ()

return (a - b)

Type Inference and Optimisation for an Impure World 9

The price of state monads.

• readSubM now has a different structural type compared with our original

readSub function.

• Monadic functions don’t compose well with non-monadic functions.

• do-notation looks a lot like a (let ... in ...) expression, but not

the same.

Type Inference and Optimisation for an Impure World 10

Haskell has stratified into
‘pure’ and monadic sub-languages...

map :: (a -> b) -> [a] -> [b]

mapM :: Monad m

=> (a -> m b) -> [a] -> m [b]

foldl :: (a -> b -> a) -> a -> [b] -> a

foldM :: Monad m

=> (a -> b -> m a) -> a -> [b] -> m a

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWithM :: Monad m

=> (a -> b -> m c) -> [a] -> [b] -> m [c]

Type Inference and Optimisation for an Impure World 11

... with missing versions of monadic functions.

find :: (a -> Bool) -> [a] -> Maybe a ...but no findM!

any :: (a -> Bool) -> [a] -> Bool ...but no anyM!

span :: (a -> Bool) -> [a] -> ([a], [a])) ...but no spanM!

• All higher order functions need a monadic version.

(What a hassle!)

• If you start to write ‘pure’ code and realise you needed a monad half way

through then you’re in for a large amount of refactoring.

• You might as well write all code monadically right from the start!

Type Inference and Optimisation for an Impure World 12

What do we really want?

• Code that uses computational effects should compose well with pure

code.

• We would like the effects to show up in the types of our functions.

• Adding a piece of effectful code to existing pure code shouldn’t require a

huge amount of refactoring.

• We need some way of maintaining evaluation order between effectful

function applications.

• We would like to support laziness if possible.

Type Inference and Optimisation for an Impure World 13

Effect inference to the rescue.

readSub :: () -(!e1)> Int

:- !e1 = {! Console };

readSub ()

= do a = readInt ()

b = readInt ()

a - b

• Effect information is orthogonal to the ‘shape’ information in the types.

• We don’t need separate let and do binding forms.

• We support destructive update of arbitrary data structures. The type

system tracks the resulting effects, and the optimisations cope.

Type Inference and Optimisation for an Impure World 14

Types, Regions, Effects and Closures.

This looks complicated, but as the region effect and closure information is

orthogonal to the shape, it can be (mostly) elided by the programmer.

map :: forall t0 t1 %r0 %r1 !e0 !e1 $c0 $c1

. (t0 -(!e1 $c1)> t1)

-> List %r1 t0 -(!e0 $c0)> List %r0 t1

:- !e0 = !{ !Read %r1; !e1 }

, $c0 = ${ $c1 }

map f [] = []

map f (x:xs) = f x : map f xs

Type Inference and Optimisation for an Impure World 15

A Lazy map.

mapL :: forall t0 t1 %r0 %r1 !e0 !c0 !c1

. (t0 -(!e0 $c1)> t1)

-> List %r1 t0 -($c0)> List %r0 t1

:- $c0 = ${ $c1 }

, Lazy %r0

, Pure !e0

, Const %r1

mapL f [] = []

mapL f (x:xs) = f x : mapL @ f x

Type Inference and Optimisation for an Impure World 16

Demos...

List.ds

List.dump-type-constraints.dc

List.dump-core-lifted.dc - System-F, map and mapL

List.dump-core-curry.dc - Apply, Curry, Call

List.dump-sea-source.dc

List.ddc.c

Graphics/Simple

Graphics/N-Body.ds - destructive update.

Vec2.ds - field projections.

Type Inference and Optimisation for an Impure World 17

