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Horray for Compositional Programming

paths = map (\name -> "/" ++ name)

$ filter (\name -> head name /= ’.’)

$ map toLower files

Lists, lambda abstractions and combining forms.

All is right with the world.
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It’s all fun and games until IO gets involved...

This doesn’t work, the types are all wrong.

map putStr $ map (++ "\n")

$ filter (\name -> head name /= ’.’)

$ getDirectoryContents "."

filter :: (a -> Bool) -> [a] -> [a]

getDirectoryContents

:: String -> IO [String]
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Forever lifting...

( liftM (map (++ "\n"))

$ liftM (filter (\name -> head name /= ’.’))

$ getDirectoryContents ".")

>>= \ff -> mapM_ putStr ff

• Argh @ IO

• The wrappers needed to use state monads are cluttering up my real

programs.
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A lack of data dependencies.

readSub :: () -> Int

readSub ()

= let a = readInt ()

b = readInt ()

in a - b

... but what is forcing the two let bindings to be evaluated in the right order?

(Answer: not much).

• Problems for complier optimisations.

• Problems for lazy evaluation.
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Code motion.

map f (map g xs) = map (f . g) xs

• Converting the first form to the second eliminates the intermediate list.

• It’s a specific example of a ’code motion’ style optimisation.

• Others are let-floating, full-laziness, case merging, deforestation...

• many such optimisations are used in GHC.
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... but it only works for pure expressions.

let a = 0

in map (\x -> printInt a)

$ map (\x -> a := a + x) [1..100]

Does not do the same thing as:

let a = 0

in map ((\x -> printInt a) . (\x -> a := a + x))

[1..100]

print :: Int -> ()

(:=) :: Int -> Int -> ()
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Solution 1: Thread the world

We could introduce the required data dependency by threading a dummy

state token through our program.

readSubW :: () -> World -> (World , Int)

readSubW () w0

= let (w1 , a) = readIntW () w0

(w2 , b) = readIntW () w1

in (w2 , a - b)

This works, but it changes the shape of our function’s type and clutters the

program. (This is what Clean does)
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Solution 2: Hide the state token in a monad

We could hide the state token behind a type definition and some

combinators, but it doesn’t really solve the problem.

data World

type IO a = World -> (World , a)

readSubM :: () -> IO Int

readSubM ()

= do a <- readIntM ()

b <- readIntM ()

return (a - b)
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The price of state monads.

• readSubM now has a different structural type compared with our original

readSub function.

• Monadic functions don’t compose well with non-monadic functions.

• do-notation looks a lot like a (let ... in ...) expression, but not

the same.
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Haskell has stratified into
‘pure’ and monadic sub-languages...

map :: (a -> b) -> [a] -> [b]

mapM :: Monad m

=> (a -> m b) -> [a] -> m [b]

foldl :: (a -> b -> a) -> a -> [b] -> a

foldM :: Monad m

=> (a -> b -> m a) -> a -> [b] -> m a

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWithM :: Monad m

=> (a -> b -> m c) -> [a] -> [b] -> m [c]
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... with missing versions of monadic functions.

find :: (a -> Bool) -> [a] -> Maybe a ...but no findM!

any :: (a -> Bool) -> [a] -> Bool ...but no anyM!

span :: (a -> Bool) -> [a] -> ([a], [a])) ...but no spanM!

• All higher order functions need a monadic version.

(What a hassle!)

• If you start to write ‘pure’ code and realise you needed a monad half way

through then you’re in for a large amount of refactoring.

• You might as well write all code monadically right from the start!
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What do we really want?

• Code that uses computational effects should compose well with pure

code.

• We would like the effects to show up in the types of our functions.

• Adding a piece of effectful code to existing pure code shouldn’t require a

huge amount of refactoring.

• We need some way of maintaining evaluation order between effectful

function applications.

• We would like to support laziness if possible.
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Effect inference to the rescue.

readSub :: () -(!e1)> Int

:- !e1 = {! Console };

readSub ()

= do a = readInt ()

b = readInt ()

a - b

• Effect information is orthogonal to the ‘shape’ information in the types.

• We don’t need separate let and do binding forms.

• We support destructive update of arbitrary data structures. The type

system tracks the resulting effects, and the optimisations cope.
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Types, Regions, Effects and Closures.

This looks complicated, but as the region effect and closure information is

orthogonal to the shape, it can be (mostly) elided by the programmer.

map :: forall t0 t1 %r0 %r1 !e0 !e1 $c0 $c1

. (t0 -(!e1 $c1)> t1)

-> List %r1 t0 -(!e0 $c0)> List %r0 t1

:- !e0 = !{ !Read %r1; !e1 }

, $c0 = ${ $c1 }

map f [] = []

map f (x:xs) = f x : map f xs
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A Lazy map.

mapL :: forall t0 t1 %r0 %r1 !e0 !c0 !c1

. (t0 -(!e0 $c1)> t1)

-> List %r1 t0 -($c0)> List %r0 t1

:- $c0 = ${ $c1 }

, Lazy %r0

, Pure !e0

, Const %r1

mapL f [] = []

mapL f (x:xs) = f x : mapL @ f x
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Demos...

List.ds

List.dump-type-constraints.dc

List.dump-core-lifted.dc - System-F, map and mapL

List.dump-core-curry.dc - Apply, Curry, Call

List.dump-sea-source.dc

List.ddc.c

Graphics/Simple

Graphics/N-Body.ds - destructive update.

Vec2.ds - field projections.
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