Rewriting Haskell Strings

w

Duncan Coutts Don Stewart Roman Leshchinskiy

P

i
Programming Tools Group Programming Languages and Systems PLs

Oxford University University of New South Wales

SAPLING 2006

1O IN HASKELL

Lazy Haskell IO can be beautiful:

return - foldl’ k 5381 - map toLower - filter isAlpha =<< readFile f
wherek hc = h x 33 + ordc

IO IN HASKELL

1O IN HASKELL

Lazy Haskell IO can be beautiful:

return - foldl’ k 5381 - map toLower - filter isAlpha =<< readFile f
wherek hc = h x 33 + ordc

But naive code can be slow:

S time ./a.out
bf805325
./a.out 23.04s total

IO IN HASKELL

2-A

An equivalent naive C implementation:

int c;
long h = 5381;
FILE xfp = fopen(f, "r");
while ((c = fgetc(fp)) != EOF)
if (isalpha(c))

h =h » 33 + tolower(c);
fclose(fp);
return h;

AND ENTIRELY UNLIKE C

An equivalent naive C implementation:

int c;
long h = 5381;
FILE xfp = fopen(f, "r");
while ((c = fgetc(fp)) != EOF)
if (isalpha(c))

h =h » 33 + tolower(c);
fclose(fp);
return h;

S time ./a.out
bf805325
./a.out 3.93s total

AND ENTIRELY UNLIKE C

3-A

LET’S FIX IT!

Use ByteStrings with stream fusion

import Data.ByteString. Lazy
return - foldl’ k 5381 - map toLower - filter isAlpha =<< readFile f
wherek hc = h * 33 4+ ord c

LET’S FIX IT!

LET’S FIX IT!

Use ByteStrings with stream fusion

import Data.ByteString. Lazy
return - foldl’ k 5381 - map toLower - filter isAlpha =<< readFile f
wherek hc = h * 33 4+ ord c

$ time ./a.out
bf805325
./a.out 2.04s total

LET’S FIX IT!

4-A

R N I A O

Haskell Strin

ByteString
(no fusion

Naive C

ByteString
(with fusioff

Block-IO C

|
0.0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s 7.0s 8.0s

You have to rewrite the C version to be block oriented to win.

COMPARING STRINGS, BYTESTRINGS AND C

The Lovely, Delicate [Char]

data [] a =[] | a : [a]

type String = [Char]
=» Strings are represented as linked lists of pointers to chars.
=>» Every node requires an indirection, and another to retrieve character
=» Bad for the cache, bad for gcc, bad for performance.

REPRESENTING STRINGS

REPRESENTING STRINGS

The Lovely, Delicate [Char]

data [] a =[] | a : [a]
type String = [Char]

=» Strings are represented as linked lists of pointers to chars.
=>» Every node requires an indirection, and another to retrieve character
=» Bad for the cache, bad for gcc, bad for performance.

The Ruthless, Cut-throat ByteString
data ByteString = BS ! (ForeignPtr Word8) !Int !Int

Listen to your hardware!

Changing the type is a big win, but we can play better games yet ...

REPRESENTING STRINGS

6-A

BOTTLENECK: TEMPORARY DATA STRUCTURES

print . minimum . filter (‘’isPrefixOf’ x) . map toUpper

BOTTLENECK: TEMPORARY DATA STRUCTURES

BOTTLENECK: TEMPORARY DATA STRUCTURES

print . minimum . filter (‘’isPrefixOf’ x) . map toUpper

And this is compiled to:

case map toUpper s of s’ ->
case filter (‘'isPrefixOf’ x) s’ of s’'’' ->
case minimum s’’ of s’’’ -> print s’’’

Lots of temporary arrays are being allocated and discarded!

BOTTLENECK: TEMPORARY DATA STRUCTURES

7-A

THE BIG IDEA: DEFORESTATION AND FUSION

|deally, we’'d like to make just one pass over the input data
We’'d write:

map £ . map g

THE BIG IDEA: DEFORESTATION AND FUSION

THE BIG IDEA: DEFORESTATION AND FUSION

|deally, we’'d like to make just one pass over the input data
We’'d write:
map £ . map g

and the compiler would emit:

map (£ . g)

THE BIG IDEA: DEFORESTATION AND FUSION

8-A

THE BIG IDEA: DEFORESTATION AND FUSION

|deally, we’'d like to make just one pass over the input data
We’'d write:

map £ . map g

and the compiler would emit:
map (£ . g)

We can teach the compiler how to do this:

(map/map fusion) map f-map g — map (f-g)

THE BIG IDEA: DEFORESTATION AND FUSION

8-B

FUSION SYSTEMS
A variety of general purpose fusion systems exist:

(foldr /build fusion) V g k =z .
foldr k z (build g) — g k 2

FUSION SYSTEMS

FUSION SYSTEMS

A variety of general purpose fusion systems exist:

(foldr /build fusion) V g k =z .
foldr k z (build g) — g k 2

(destroy /unfoldr fusion) Vg f e .
destroy g (unfoldr f e) — g f e

FUSION SYSTEMS

9-A

FUSION SYSTEMS

A variety of general purpose fusion systems exist:

(foldr /build fusion) V g k =z .
foldr k z (build g) — g k 2

(destroy /unfoldr fusion) Vg f e .
destroy g (unfoldr f e) — g f e

(function array fusion) V f g s t.
loop f s-fst -loop g t — loop (fuse f g) (s, 1)

FUSION SYSTEMS

9-B

A variety of general purpose fusion systems exist:

(foldr /build fusion) Vg k z .
foldr k z (build g) — g k 2

(destroy /unfoldr fusion) Vg f e .
destroy g (unfoldr f e) — g f e

(function array fusion) Vf gst.
loop f s-fst -loop g t — loop (fuse f g) (s, t)

But none support all of: a wide range of operations, flat
non-inductive structures, and compile to fast code in GHC.

FUSION SYSTEMS 9-C

To support array access patterns in O(1), we need to factor out the
three phases:

* read the array into a stream of elements
 process the stream elements

- write the resulting stream into a new array

STREAM FUSION

10

We need an efficient stream abstraction:

data Stream = ds. Stream (s — Step s) s Int
data Step s =Done

| Yield Word8 s

| Skip s

An existentially wrapped seed, and stepper function, generating
one of 3 results for each element of the stream:

=» Done Finished processing the stream

=» Yield Produce a transformed element

=» Skip Filter this element out

Also carry a hint about the resulting size, to guide reallocations.

THE STREAM TYPE

11

BUILDING A STREAM FROM AN ARRAY

Arrays to Streams:

read :: ByteString — Stream

read s = Stream next O n

where
n = length s
nerxti|i < n = Yield (index s i) (i + 1)

| otherwise = Done

Writing streams back out to array is also fairly straight forward.

BUILDING A STREAM FROM AN ARRAY

12

Pairs of read and write are just the identity function on streams, so
they can be removed, yielding our fusion rule:

(read /write fusion) read -write — id

=» Whenever we see these pairs in the user’s code, it is safe for the
compiler to remove them.

=» The library author supplies rewrite rules specific to the library,
extending the compiler’s optimisation range.

REMOVING INTERMEDIATE STREAMS

13

STREAM TRANSFORMERS

What about actually transforming the data?

Build a stream, transform it, and write it back:

map :: (Word8 — Word8) — ByteString — ByteString
map [= write - mapS f - read

STREAM TRANSFORMERS

14

STREAM TRANSFORMERS

What about actually transforming the data?

Build a stream, transform it, and write it back:

map :: (Word8 — Word8) — ByteString — ByteString
map [= write - mapS f - read

And applying f to each element:

mapS :: (Word8 — Word8) — Stream — Stream
mapS f (Stream next s n) = Stream next’ s n
where

next’ s = case next s of

Done — Done
Yield x s' — Yield (f x) '
Skip s' — Skip s’

STREAM TRANSFORMERS 14-A

map f - map g

FUSING MAP

FUSING MAP

15

map f - map g

= write - mapS f - read - {inline map x2}

write - mapS g - read

FUSING MAP 15-A

map f -

= write -

write -

— write -

map g

mapS f - read - {inline map x2}
mapS g - read

mapS f - mapS g - read {read/write fusion}

FUSING MAP

15-B

map f - map g
= write - mapS f - read - {inline map x2}
write - mapS g - read

= write - mapS f - mapS g - read {read/write fusion}

= write - mapS (f - g) - read {map/map fusion}

FUSING MAP 15-C

FILTER

filterS :: (Word8 — Bool) — Stream — Stream
filterS p (Stream next s n) = Stream next’ s n
where

next’ s = case next s of

Done — Done

Yieldx s’ | px — Yield x s’
| otherwise — Skip s’

Skip s’ — Skip s’

16

FOLD

foldlS" :: (a — Word8 — a) — a — Stream — a
foldlS" f z (Stream next s n) = loop z s
where

loop z s = case next s of

Done — 2
Yield x ' — loop (f zx) &
Skip s* — loop z &

17

FIND/SHORT-CIRCUITING

findS :: (Word8 — Bool) — Stream — Maybe Word8
findS p (Stream next s n) = loop s

where
loop s = case next s of
Done — Nothing
Yield x s’ | p x — Just x
| otherwise — loop s’
Skip s’ — loop s’

FIND/SHORT-CIRCUITING

18

foldl' f z -

FUSING WITH STREAMS

map g - filter h

FUSING WITH STREAMS

19

FUSING WITH STREAMS

foldl' f z - map g - filter h

— foldlS’ f z - read - write - mapS ¢ {inline foldl’, map
- read - write - filterS h - read and filter}

FUSING WITH STREAMS 19-A

FUSING WITH STREAMS

foldl' f z - map g - filter h

— foldlS’ f z - read - write - mapS ¢ {inline foldl’, map
- read - write - filterS h - read and filter}

= foldlS" f z - mapS g - filterS h - read {read/write fusion}

FUSING WITH STREAMS 19-B

foldl' f z - map g - filter h

— foldlS" f z - read - write - mapS g {inline foldl’, map
- read - write - filterS h - read and filter}

= foldlS" f z - mapS g - filterS h - read {read/write fusion}

=> The original 3 loops, and 2 intermediate arrays, are automatically
transformed into a single traversal.

=> GHC then further inlines and combines transformers, eliminating Step
values.

> 2.4 x faster

FUSING WITH STREAMS 19-C

Over 40 functions in the ByteString library fuse, including:
=» both up and down traversals (foldl, foldr, scanl, scanr)
=» up and down loops will fuse with “bidirectional” loops like map

=» lazy bytestrings, combining strict array chunks in the L2 cache, with a
lazy spine

More details: see the paper.

EXTENSIONS 20

RESULTS

RESULTS

21

'Char| AND LAZY BYTESTRING : RUNNING TIME

[Char] ——

lazy ByteString =y

F
j:l
F

++

index

map
filter
foldl’
take

0.5
0.4
3 03
Q
2
£
s 02
) ’_LW
0
g 2
o &
Q
o

length

drop |[]

takeWhile

dropWhile

reverse

cons

head

tail

last

init

isPrefixOf

any

maximum

elem

elemindex F

[Char] AND LAZY BYTESTRING : RUNNING TIME

22

COMPARATIVE FUSION STRATEGIES

loop fusion T—
stream fusion XTI

(0o8s) awin

dew dewdew dew
Jueos:(1ay1y dew)
(+oy1ydew)" Jpjoy
Jueos iyl

Ja4ly" Ip10}

Jueos dew

dew- pjoy}

1ueos’ Ip|o}
Jueos-(4ayy dew)
(42111y-dew)-|pjo}
JueoS 18}1}

Ja4l’ IPI0}

ueos dew

dewr p|o}
|ueos’,|p|o}

(401 dew) se)y dew
(10N dew) sayy
sy 1oy dew
(1o dew) dew
dew-(18))1y-dew)
J8)1ydew
dewriayy

Jayly a9yl

dew-dew

23

COMPARATIVE FUSION STRATEGIES

STREAMS WITH AND WITHOUT FUSION

EFFECT OF FUSION

no fusion C——
fusion Ty

ONOUOITOAN O

dew-dewdew dew
Jueos’(1ay1y dew)
(1oy1y dew)" Jpjo}
1ueos syl

Jayy’ IPIo}

Jueos dew

dew- Jpjo}

1ueos’ Ip|o}
Jueos*(1ay1y dew)
(1oy1y dew) |pio}
|ueos’ oyl

19y |p|o}

Jueos dew

dewr p|o}
|ueos’,|p|o}

(4o dew) 1oy y-dew
(1o dew) oy
Ja)|y Jeyy dew
4oy dew)-dew
dewr-(18y)1y dew)
J8)1ydew

dew sy

Jayy ey

dewr-dew

24

EFFECT OF FUSION: STREAMS WITH AND WITHOUT FUSION

C, BYTESTRING AND [CHAR] UNIX TOOLS

14

_ C =mmm

12 ByteString U
»g 10 [Char] ——
£ 8
[0]
E 6 |:| ‘
] : |:| I

cat tac tail -1 wc - WC -C sort tr-d

C, BYTESTRING AND [CHAR] UNIX TOOLS

. 2K ZBK R JNR 2R AR AR 2

Stream fusion for Haskell lists

Improving the GHC backend for tight loops and branch prediction
Efficiently fusing multiple traversals: append, zip, concatMap

Fusible Binary serialisation

Fusion across IO boundaries

Establish the safety of streams in the presence of seq

Rewrite Great Language Shootout entries, and take back 1st place! ;-)

Done: Fusible Storable a => Vector a (Spencer Janssen for
Summer of Code)

FUTURE

26

DATA.BYTESTRING

L
\?H)

=* Home page : http://www.cse.unsw.edu.au/~dons/fps.html
=» Available with the current version of Hugs
=» Available with GHC 6.6

powered

o @B

DATA.BYTESTRING

27

