Reference monitors for proof-carrying code

Simon Winwood
University of New South Wales, National ICT Australia

sjw@cse.unsw.edu.au

Produced with IATEX seminar style & PSTricks

PROOF-CARRYING CODE

: Code
policy
Proof &J

source app. + proof

|
|
|
|
policy — —+ : > ——— RUN
|
|
|
|

COMPILE '

Untrusted ! Trusted

CHECK

Proof-carrying code:
=> Application carries a machine-checkable safety proof
— Need only trust checker (+ semantics, policy, logic, ...)
=» Proofs generated automatically

=> Compiler uses language properties to show memory + control safety
— OK for simple code, e.g. filters

’ROOF-CARRYING CODE

policy Code [J

source app. + proof
Proof &

COMPILE '

Untrusted ! Trusted

|
|
|
|

policy — + : — — RUN
|
: CHECK
|

Proof-carrying code:
=> Application carries a machine-checkable safety proof
— Need only trust checker (+ semantics, policy, logic, ...)
=» Proofs generated automatically

=> Compiler uses language properties to show memory + control safety
— OK for simple code, e.g. filters

Example apps — extensible web browsers, kernels, ...

’ROOF-CARRYING CODE 2-A

What about high-level policies?:

=» Can reason about system calls, library invocations, etc.
=» Can reason about history of invocations

’ROOF-CARRYING CODE

What about high-level policies?:

=» Can reason about system calls, library invocations, etc.
=» Can reason about history of invocations

Example: Chinese Wall Policy

A user may read/write files for any client, but once
they have done so, they must not access files be-
longing to other clients.

’ROOF-CARRYING CODE

3-A

MY WORK
Replaced code [

source app. + proof | Code
| - | Proofs &
- |
weak \ | == tron
policy) + : (:olicg)
COMPILE ' | |
MERGE : —— RUN
|
SYNTHESISE | CHECK
stron |
) —F— 7 |
J Untrusted : Trusted

monitor + proof
Synthesise a reference monitor + proofs from security policy v
— monitor performs sensitive operations on behalf of application.

Y WORK 4

P3TL is the safety fragment of propositional linear temporal logic

=>» propositional variables: p, q, . ..
=» usual propositional connective: —, =, A, V, ...

=>» previously (&)

=>» since (¢pSY)

’AST-TIME PROPOSITIONAL TEMPORAL LOGIC (P3TL)

P3TL is the safety fragment of propositional linear temporal logic

=» propositional variables: p, q, . ..
=» usual propositional connective: —, =, A, V, ...

=>» previously (&)

® o—o—g—é

=>» since (¢SY)

’AST-TIME PROPOSITIONAL TEMPORAL LOGIC (P3TL)

5-A

P3TL is the safety fragment of propositional linear temporal logic

=» propositional variables: p, q, . ..
=» usual propositional connective: —, =, A, V, ...

=>» previously (&)

® o—o—g—é

=>» since (¢SY)

Now
O—O—(O0O—0——0
(G ¢ ¢ ¢ ¢

PSP

’AST-TIME PROPOSITIONAL TEMPORAL LOGIC (P3TL)

5-B

P3TL (cont.):
Chinese Wall in P3TL:

(access(f) N f € Coke) — (—S(access(g) A g € Pepsi))
A

(access(h) N h € Pepsi) — (=S (access(k) A k € Coke))

where

-OT (initial state)

init

QY

TSy (at some point previously)

’AST-TIME PROPOSITIONAL TEMPORAL LOGIC (P3TL)

P3TL gives us a logic for policies (sequences of worlds)

Use a Hoare-like logic (in Isabelle/HOL) for programs

s = 1 := e|IF e THEN s ELSE s
| WHILE e DO s | s; s | Secure ¢

=> Models are a tuple of (program state, state trace)
— trace does not appear at runtime

=» Use a shallow embedding for the assertion logic
— assertions are predicates on models

=» Abstract over nature of secure events with Secure statement
— update world sequence after this statement

\ LOGIC FOR MONITORS

A Hoare Logic: Rules:

= {X(s,0).P(s,0) ANbste{lQ} F{\(s,0).P(s,0) A —=bs}te'{Q} i
~{P}IF b THEN e ELSE ¢'{Q}

V(s,0).(P(s,0) — (o-sFE @) V(s,0).P(s,0) — Q(s,0-5)
- {P}Secure ¢{Q}

SECURE

\ LOGIC FOR MONITORS 8

A Hoare Logic: Rules:

= {X(s,0).P(s,0) ANbste{lQ} F{\(s,0).P(s,0) A —=bs}te'{Q} i
- {P}IF b THEN e ELSE ¢'{Q}

V(s,0).(P(s,0) — (o-sFE @) V(s,0).P(s,0) — Q(s,0-5)
- {P}Secure ¢{Q}

SECURE

The premises to SECURE are our synthesis proof obligations

\ LOGIC FOR MONITORS 8-A

Basic idea
=> Keep track of values of temporal sub-formula in invariant
— only need for the previous world
=» When we see a O ¢ check sub-formula state variable for ¢

= Unfold $Sv to ¥ v (O (6SY) A ¢)

 YNTHESIS

Basic idea
=> Keep track of values of temporal sub-formula in invariant
— only need for the previous world
=» When we see a O ¢ check sub-formula state variable for ¢

= Unfold $Sv to ¥ v (O (6SY) A ¢)

PATHEXPLORER (Havelund and Rosu, TACAS’02) uses a similar
algorithm (sans proofs)

 YNTHESIS

9-A

Basic idea

=» Keep track of values of temporal sub-formula in invariant
— only need for the previous world

=> When we see a & ¢ check sub-formula state variable for ¢

= Unfold $Sv to ¥ v (O (6SY) A ¢)

PATHEXPLORER (Havelund and Rosu, TACAS’02) uses a similar
algorithm (sans proofs)

Building the proof
=>» Monitor invariant: by = QY1 A ...b, = Oy
— 1p; are sub-formulae
=>» Proof obligations combine checks and invariant.
=» Each step in synthesis adds proof rule to obligations..

 YNTHESIS

9-B

A monitorfor Oz =1— (x <5)S(y=1):

inv = stateg <« Oz =1Astate; < O((x <b)S(y=1))

IF (x = 1) THEN
tmpg = true
ELSE Proof of

tmpg := false

IF (y = 1) THEN tmp; < skF (x<5)S(y=1)

tmpq = true

ELSE
IF (statey = 1) THEN

IF (z < 5) THEN

tmpy = true (%) .
ELSE 1NU stateq

tmpq := false INV-7 — NNEGI
ELSE S':@(pSQ) S}é_'p
IF(tgnfl :—: ifalsi THEN NIMPLI2
IF (tm(;)l_: true) THEN S # @(p 8 q) — _'p
Secure (policy); NEGI
stateg = tmpq; S |: ﬁ(@(p S q) — —|p)

state1 := tmpq IMPLIl
ELSE

sE-q— (O(Sq) —)
ELSE SINCEI

Secure (policy); S |: p S q

stateqg = tmpq;

state1 := tmpq

 YNTHESIS 10

FIRST-ORDER POLICY LOGICS

What about:

read(X) — (—close(X)) S open(X)

Problem: X spans the temporal connective
— not a valid P3TL formula

'IRST-ORDER POLICY LOGICS

11

What about:

read(X) — (—close(X)) S open(X)

Problem: X spans the temporal connective
— not a valid P3TL formula

Solution: Move to a first-order logic:

VX.(read(X) — (—close(X)) S open(X))

'IRST-ORDER POLICY LOGICS 11-A

What about:

read(X) — (—close(X)) S open(X)

Problem: X spans the temporal connective
— not a valid P3TL formula

Solution: Move to a first-order logic:

VX.(read(X) — (—close(X)) S open(X))

Non-trivial — FOLTL is much less well-behaved than PLTL

'IRST-ORDER POLICY LOGICS 11-B

Current work:
=» Past-time only is decidable
=» Naive monitors can be very expensive
=> How to do this efficiently?

'IRST-ORDER POLICY LOGICS

12

Current work:
=» Past-time only is decidable
=» Naive monitors can be very expensive
=> How to do this efficiently?

Synthesis is similar to propositional case
=> Require a set of satisfying values for each formula (not 1 bit)
— Size can be linear in length of trace!
=» Each step refines possible values
=» Existentials check non-emptiness of sets

'IRST-ORDER POLICY LOGICS 12-A

QUESTIONS?

JUESTIONS?

13

