
Reference monitors for proof-carrying code

Simon Winwood
University of New South Wales, National ICT Australia

sjw@cse.unsw.edu.au

Produced with LATEX seminar style & PSTricks 1

PROOF-CARRYING CODE

COMPILE
policy

source app. + proof

+

policy

CHECK
RUN

TrustedUntrusted

Code
Proof

Proof-carrying code:
! Application carries a machine-checkable safety proof

→ Need only trust checker (+ semantics, policy, logic, ...)
! Proofs generated automatically
! Compiler uses language properties to show memory + control safety

→ OK for simple code, e.g. filters

PROOF-CARRYING CODE 2

PROOF-CARRYING CODE

COMPILE
policy

source app. + proof

+

policy

CHECK
RUN

TrustedUntrusted

Code
Proof

Proof-carrying code:
! Application carries a machine-checkable safety proof

→ Need only trust checker (+ semantics, policy, logic, ...)
! Proofs generated automatically
! Compiler uses language properties to show memory + control safety

→ OK for simple code, e.g. filters

Example apps — extensible web browsers, kernels, ...

PROOF-CARRYING CODE 2-A

What about high-level policies?:
! Can reason about system calls, library invocations, etc.
! Can reason about history of invocations

PROOF-CARRYING CODE 3

What about high-level policies?:
! Can reason about system calls, library invocations, etc.
! Can reason about history of invocations

Example: Chinese Wall Policy
A user may read/write files for any client, but once
they have done so, they must not access files be-
longing to other clients.

PROOF-CARRYING CODE 3-A

MY WORK

COMPILE

weak
policy

)

source app. + proof

+

SYNTHESISE
strong
policy

)

monitor + proof

+

MERGE + +

(strong
policy

)

CHECK
RUN

TrustedUntrusted

Replaced code
Code
Proofs

Synthesise a reference monitor + proofs from security policy ψ

→ monitor performs sensitive operations on behalf of application.

MY WORK 4

PAST-TIME PROPOSITIONAL TEMPORAL LOGIC (P3TL)
P3TL is the safety fragment of propositional linear temporal logic

! propositional variables: p, q, . . .

! usual propositional connective: →,¬,∧,∨, . . .

! previously (φ)

! since (φSψ)

PAST-TIME PROPOSITIONAL TEMPORAL LOGIC (P3TL) 5

PAST-TIME PROPOSITIONAL TEMPORAL LOGIC (P3TL)
P3TL is the safety fragment of propositional linear temporal logic

! propositional variables: p, q, . . .

! usual propositional connective: →,¬,∧,∨, . . .

! previously (φ)
Now

φφ

! since (φSψ)

PAST-TIME PROPOSITIONAL TEMPORAL LOGIC (P3TL) 5-A

PAST-TIME PROPOSITIONAL TEMPORAL LOGIC (P3TL)
P3TL is the safety fragment of propositional linear temporal logic

! propositional variables: p, q, . . .

! usual propositional connective: →,¬,∧,∨, . . .

! previously (φ)
Now

φφ

! since (φSψ)
Now

φSψ

φφφφψ

PAST-TIME PROPOSITIONAL TEMPORAL LOGIC (P3TL) 5-B

P3TL (cont.):

Chinese Wall in P3TL:

(access(f) ∧ f ∈ Coke) −→ (¬ (access(g) ∧ g ∈ Pepsi))

∧

(access(h) ∧ h ∈ Pepsi) −→ (¬ (access(k) ∧ k ∈ Coke))

where

init ≡ ¬ & (initial state)
ψ ≡ &Sψ (at some point previously)

PAST-TIME PROPOSITIONAL TEMPORAL LOGIC (P3TL) 6

A LOGIC FOR MONITORS

P3TL gives us a logic for policies (sequences of worlds)

Use a Hoare-like logic (in Isabelle/HOL) for programs

s ::= x := e | IF e THEN s ELSE s
| WHILE e DO s | s; s | Secure φ

! Models are a tuple of (program state, state trace)
→ trace does not appear at runtime

! Use a shallow embedding for the assertion logic
→ assertions are predicates on models

! Abstract over nature of secure events with Secure statement
→ update world sequence after this statement

A LOGIC FOR MONITORS 7

A Hoare Logic: Rules:

...
' {λ(s, σ).P (s, σ) ∧ b s}e{Q} ' {λ(s, σ).P (s, σ) ∧ ¬b s}e′{Q}

' {P}IF b THEN e ELSE e′{Q}
IF

...
∀(s, σ).(P (s, σ) −→ (σ · s ! φ)) ∀(s, σ).P (s, σ) −→ Q(s, σ · s)

' {P}Secure φ{Q}
SECURE

A LOGIC FOR MONITORS 8

A Hoare Logic: Rules:

...
' {λ(s, σ).P (s, σ) ∧ b s}e{Q} ' {λ(s, σ).P (s, σ) ∧ ¬b s}e′{Q}

' {P}IF b THEN e ELSE e′{Q}
IF

...
∀(s, σ).(P (s, σ) −→ (σ · s ! φ)) ∀(s, σ).P (s, σ) −→ Q(s, σ · s)

' {P}Secure φ{Q}
SECURE

The premises to SECURE are our synthesis proof obligations

A LOGIC FOR MONITORS 8-A

SYNTHESIS
Basic idea
! Keep track of values of temporal sub-formula in invariant

→ only need for the previous world
! When we see a φ check sub-formula state variable for φ

! Unfold φSψ to ψ ∨ ((φSψ) ∧ φ)

SYNTHESIS 9

SYNTHESIS
Basic idea
! Keep track of values of temporal sub-formula in invariant

→ only need for the previous world
! When we see a φ check sub-formula state variable for φ

! Unfold φSψ to ψ ∨ ((φSψ) ∧ φ)

PATHEXPLORER (Havelund and Rosu, TACAS’02) uses a similar
algorithm (sans proofs)

SYNTHESIS 9-A

SYNTHESIS
Basic idea
! Keep track of values of temporal sub-formula in invariant

→ only need for the previous world
! When we see a φ check sub-formula state variable for φ

! Unfold φSψ to ψ ∨ ((φSψ) ∧ φ)

PATHEXPLORER (Havelund and Rosu, TACAS’02) uses a similar
algorithm (sans proofs)

Building the proof
! Monitor invariant: b1 ≡ ψ1 ∧ . . . bn ≡ ψn

→ ψi are sub-formulae
! Proof obligations combine checks and invariant.
! Each step in synthesis adds proof rule to obligations..

SYNTHESIS 9-B

A monitor for x = 1 → (x < 5) S (y = 1):

inv ≡ state0 ↔ x = 1 ∧ state1 ↔ ((x < 5) S (y = 1))

IF (x = 1) THEN
tmp0 := true

ELSE
tmp0 := false

IF (y = 1) THEN
tmp1 := true

ELSE
IF (state1 = 1) THEN

IF (x < 5) THEN
tmp1 := true (∗)

ELSE
tmp1 := false

ELSE
tmp1 := false

IF (state0 = true) THEN
IF (tmp1 = true) THEN
Secure (policy);
state0 := tmp0;
state1 := tmp1

ELSE
Error

ELSE
Secure (policy);
state0 := tmp0;
state1 := tmp1

Proof of
tmp1 ↔ s ! (x < 5) S (y = 1)

INV-π
inv state1

s ! (p S q)

p

s ! ¬p
NNEGI

s ! (p S q) → ¬p

s ! ¬((p S q) → ¬p)

s ! ¬q → ((p S q) → ¬p)

s ! p S q
SINCEI

IMPLI1

NEGI

NIMPLI2

SYNTHESIS 10

FIRST-ORDER POLICY LOGICS

What about:

read(X) −→ (¬close(X)) S open(X)

Problem: X spans the temporal connective
→ not a valid P3TL formula

FIRST-ORDER POLICY LOGICS 11

FIRST-ORDER POLICY LOGICS

What about:

read(X) −→ (¬close(X)) S open(X)

Problem: X spans the temporal connective
→ not a valid P3TL formula

Solution: Move to a first-order logic:

∀X.(read(X) −→ (¬close(X)) S open(X))

FIRST-ORDER POLICY LOGICS 11-A

FIRST-ORDER POLICY LOGICS

What about:

read(X) −→ (¬close(X)) S open(X)

Problem: X spans the temporal connective
→ not a valid P3TL formula

Solution: Move to a first-order logic:

∀X.(read(X) −→ (¬close(X)) S open(X))

Non-trivial — FOLTL is much less well-behaved than PLTL

FIRST-ORDER POLICY LOGICS 11-B

Current work:
! Past-time only is decidable
! Naive monitors can be very expensive
! How to do this efficiently?

FIRST-ORDER POLICY LOGICS 12

Current work:
! Past-time only is decidable
! Naive monitors can be very expensive
! How to do this efficiently?

Synthesis is similar to propositional case
! Require a set of satisfying values for each formula (not 1 bit)

→ size can be linear in length of trace!
! Each step refines possible values
! Existentials check non-emptiness of sets

FIRST-ORDER POLICY LOGICS 12-A

QUESTIONS?

QUESTIONS? 13

