
Type Families in Haskell

Manuel M. T. Chakravarty
University of New South Wales

Joint work with
Gabriele Keller

Simon Peyton Jones
Simon Marlow

. . . and more recently
Tom Schrijvers

Martin Sulzmann

Manuel Chakravarty Type Families in Haskell

Motivation

Type classes
• Most innovative feature of Haskell
• Proved useful beyond simple overloading of equality,

ordering, and arithmetic functions

Multi-parameter type classes
• Haskell 98 permits only a single parameter to a type class
• Multiple parameters can require a lot of type annotations
• Functional dependencies were proposed as a solution:

I Led to a lot of interesting type level programming
I But their syntax is relational, not functional
I And they have limits

C++ success story
• typedefs in classes ⇒ traits classes in the STL

Manuel Chakravarty Type Families in Haskell

Motivation

Type classes
• Most innovative feature of Haskell
• Proved useful beyond simple overloading of equality,

ordering, and arithmetic functions

Multi-parameter type classes
• Haskell 98 permits only a single parameter to a type class
• Multiple parameters can require a lot of type annotations
• Functional dependencies were proposed as a solution:

I Led to a lot of interesting type level programming
I But their syntax is relational, not functional
I And they have limits

C++ success story
• typedefs in classes ⇒ traits classes in the STL

Manuel Chakravarty Type Families in Haskell

Motivation

Type classes
• Most innovative feature of Haskell
• Proved useful beyond simple overloading of equality,

ordering, and arithmetic functions

Multi-parameter type classes
• Haskell 98 permits only a single parameter to a type class
• Multiple parameters can require a lot of type annotations
• Functional dependencies were proposed as a solution:

I Led to a lot of interesting type level programming
I But their syntax is relational, not functional
I And they have limits

C++ success story
• typedefs in classes ⇒ traits classes in the STL

Manuel Chakravarty Type Families in Haskell

Type Classes in a Nutshell

Ad-hoc polymorphism (overloading)

class Eq a where
(==) :: a → a → Bool

instance Eq Int where
(==) = primEqInt

instance (Eq a, Eq b) ⇒ Eq (a, b) where
(x1, y1) == (x2, y2) = (x1 == x2) && (y1 == y2)

Full type of equality is. . .

(==) :: Eq a ⇒ a → a → Bool -- qualified type

Usage: (2, (3, 4)) == (2, (3, 4))

Manuel Chakravarty Type Families in Haskell

Type Classes in a Nutshell

Ad-hoc polymorphism (overloading)

class Eq a where
(==) :: a → a → Bool

instance Eq Int where
(==) = primEqInt

instance (Eq a, Eq b) ⇒ Eq (a, b) where
(x1, y1) == (x2, y2) = (x1 == x2) && (y1 == y2)

Full type of equality is. . .

(==) :: Eq a ⇒ a → a → Bool -- qualified type

Usage: (2, (3, 4)) == (2, (3, 4))

Manuel Chakravarty Type Families in Haskell

Type Classes in a Nutshell

Ad-hoc polymorphism (overloading)

class Eq a where
(==) :: a → a → Bool

instance Eq Int where
(==) = primEqInt

instance (Eq a, Eq b) ⇒ Eq (a, b) where
(x1, y1) == (x2, y2) = (x1 == x2) && (y1 == y2)

Full type of equality is. . .

(==) :: Eq a ⇒ a → a → Bool -- qualified type

Usage: (2, (3, 4)) == (2, (3, 4))

Manuel Chakravarty Type Families in Haskell

Type Classes in a Nutshell

Ad-hoc polymorphism (overloading)

class Eq a where
(==) :: a → a → Bool

instance Eq Int where
(==) = primEqInt

instance (Eq a, Eq b) ⇒ Eq (a, b) where
(x1, y1) == (x2, y2) = (x1 == x2) && (y1 == y2)

Full type of equality is. . .

(==) :: Eq a ⇒ a → a → Bool -- qualified type

Usage: (2, (3, 4)) == (2, (3, 4))

Manuel Chakravarty Type Families in Haskell

Why Type Families?

A motivating programming problem
• Family of containers with different representation types

(e.g., lists, trees, arrays, bit sets)
• Representation type determines the element type plus

additional constraints

Type of the insertion function

insert :: Collects c ⇒ Elem c → c → c

where
• Collects c asserts that c represents a collection
• Elem c maps c to its element type

For example,

Elem [e] = e for Collects [e]
Elem BitSet = Char for Collects BitSet

Manuel Chakravarty Type Families in Haskell

Why Type Families?

A motivating programming problem
• Family of containers with different representation types

(e.g., lists, trees, arrays, bit sets)
• Representation type determines the element type plus

additional constraints

Type of the insertion function

insert :: Collects c ⇒ Elem c → c → c

where
• Collects c asserts that c represents a collection
• Elem c maps c to its element type

For example,

Elem [e] = e for Collects [e]
Elem BitSet = Char for Collects BitSet

Manuel Chakravarty Type Families in Haskell

With associated type synonym families

class Collects c where

type Elem c -- definition varies with c

empty :: c
insert :: Elem c → c → c
toList :: c → [Elem c]

instance Eq e ⇒ Collects [e] where

type Elem [e] = e

. . .
instance Collects BitSet where

type Elem BitSet = Char

. . .
instance (Collects c, Hashable (Elem c)) ⇒

Collects (Array Int c) where

type Elem (Array Int c) = Elem c

. . .

Manuel Chakravarty Type Families in Haskell

With associated type synonym families

class Collects c where
type Elem c -- definition varies with c
empty :: c
insert :: Elem c → c → c
toList :: c → [Elem c]

instance Eq e ⇒ Collects [e] where
type Elem [e] = e
. . .

instance Collects BitSet where
type Elem BitSet = Char
. . .

instance (Collects c, Hashable (Elem c)) ⇒
Collects (Array Int c) where

type Elem (Array Int c) = Elem c
. . .

Manuel Chakravarty Type Families in Haskell

class Collects c where
type Elem c
empty :: c
insert :: Elem c → c → c
toList :: c → [Elem c]

foldr :: (a → b → b) → b → [a] → b -- standard function

Make a collection from a list of elements

fromList :: ???

fromList l = foldr insert empty l

Manuel Chakravarty Type Families in Haskell

class Collects c where
type Elem c
empty :: c
insert :: Elem c → c → c
toList :: c → [Elem c]

foldr :: (a → b → b) → b → [a] → b -- standard function

Make a collection from a list of elements

fromList :: Collects c ⇒ [Elem c] → c
fromList l = foldr insert empty l

Manuel Chakravarty Type Families in Haskell

Merge elements of one collection into another

merge :: (Collects c1, Collects c2, ????)⇒ c1 → c2 → c2
merge c1 c2 = foldr insert c2 (toList c1)

• We need equality constraints

Make a collection from a list of elements

fromList :: Collects c ⇒ [Elem c] → c
fromList l = foldr insert empty l

Manuel Chakravarty Type Families in Haskell

Merge elements of one collection into another

merge :: (Collects c1, Collects c2, Elem c1 ∼ Elem c2)⇒ c1 → c2 → c2
merge c1 c2 = foldr insert c2 (toList c1)

• We need equality constraints

Make a collection from a list of elements

fromList :: Collects c ⇒ [Elem c] → c
fromList l = foldr insert empty l

Manuel Chakravarty Type Families in Haskell

Type Indexed Families of Types

Haskell 98 type classes define families of values
Overloaded functions are typed-indexed families of values:

(+) :: Num a ⇒ a → a → a
≈

addInt :: Int → Int → Int
addFloat :: Float → Float → Float

...

We add families of types
Typed-indexed families of types map index types to family
members:

Elem :: ? → ? ≈

Elem [e] = e

Elem BitSet = Char
...

Manuel Chakravarty Type Families in Haskell

Type Indexed Families of Types

Haskell 98 type classes define families of values
Overloaded functions are typed-indexed families of values:

(+) :: Num a ⇒ a → a → a
≈

addInt :: Int → Int → Int
addFloat :: Float → Float → Float

...

We add families of types
Typed-indexed families of types map index types to family
members:

Elem :: ? → ? ≈

Elem [e] = e

Elem BitSet = Char
...

Manuel Chakravarty Type Families in Haskell

Type families need not be associated
• We associated the family Elem with the class Collects
• Such associations are often convenient, but they are not

essential (familiy declarations in classes are just sugar)

Bounded lists

data Zero; data Succ a; -- empty data type representing
-- Peano numbers as types

-- adding type numbers
type family Add :: ? → ? → ?
type instance Add Zero y = y
type instance Add (Succ x) y = Succ (Add x y)

data BList n a where -- bounded lists as GADT
BNil :: BList Zero a
BCons :: a → BList n a → BList (Succ n) a

Manuel Chakravarty Type Families in Haskell

Type families need not be associated
• We associated the family Elem with the class Collects
• Such associations are often convenient, but they are not

essential (familiy declarations in classes are just sugar)

Bounded lists

data Zero; data Succ a; -- empty data type representing
-- Peano numbers as types

-- adding type numbers
type family Add :: ? → ? → ?
type instance Add Zero y = y
type instance Add (Succ x) y = Succ (Add x y)

data BList n a where -- bounded lists as GADT
BNil :: BList Zero a
BCons :: a → BList n a → BList (Succ n) a

Manuel Chakravarty Type Families in Haskell

Data Type Families

Unboxed arrays
• Boxed array: array of pointers to heap objects
• Unboxed array: array of basic types (as in C)

Flattened arrays
Array representation depends on the element type:

data family Array e -- family declaration (lifted)
data instance Array Int = IntArr UnboxedIntArr
data instance Array Float = IntArr UnboxedFloatArr
data instance Array (a, b) = PairArr (Array a) (Array b)

data instance Array (Array a) = ArrArr Segd (Array a)

type Segd = Array Int

[:[:1, 2:], [::], [:3, 4, 5:]:] ⇒ ArrArr [:2, 0, 3:] [:1, 2, 3, 4, 5:]

Manuel Chakravarty Type Families in Haskell

Data Type Families

Unboxed arrays
• Boxed array: array of pointers to heap objects
• Unboxed array: array of basic types (as in C)

Flattened arrays
Array representation depends on the element type:

data family Array e -- family declaration (lifted)
data instance Array Int = IntArr UnboxedIntArr
data instance Array Float = IntArr UnboxedFloatArr
data instance Array (a, b) = PairArr (Array a) (Array b)

data instance Array (Array a) = ArrArr Segd (Array a)

type Segd = Array Int

[:[:1, 2:], [::], [:3, 4, 5:]:] ⇒ ArrArr [:2, 0, 3:] [:1, 2, 3, 4, 5:]

Manuel Chakravarty Type Families in Haskell

Data Type Families

Unboxed arrays
• Boxed array: array of pointers to heap objects
• Unboxed array: array of basic types (as in C)

Flattened arrays
Array representation depends on the element type:

data family Array e -- family declaration (lifted)
data instance Array Int = IntArr UnboxedIntArr
data instance Array Float = IntArr UnboxedFloatArr
data instance Array (a, b) = PairArr (Array a) (Array b)

data instance Array (Array a) = ArrArr Segd (Array a)

type Segd = Array Int

[:[:1, 2:], [::], [:3, 4, 5:]:] ⇒ ArrArr [:2, 0, 3:] [:1, 2, 3, 4, 5:]

Manuel Chakravarty Type Families in Haskell

A fairly wild idea: Class Families

John Hughes’ Restricted Data Types

The following general set API type is too general:

class Set s where

class Restrict s a -- associated class indexed by s

empty :: s a
insert ::

Restrict s a ⇒

a → s a → s a

Associated class families to the rescue!

Sets as lists (finite maps) requires Eq (Ord) of elements!

instance Set [] where

class Eq a ⇒ Restrict [] a

empty = []

insert x s | x ‘elem‘ s = s
| otherwise = x : s

instance Eq a ⇒ Restrict [] a -- Tiresome instance

Manuel Chakravarty Type Families in Haskell

A fairly wild idea: Class Families

John Hughes’ Restricted Data Types

The following general set API type is too general:

class Set s where

class Restrict s a -- associated class indexed by s

empty :: s a
insert ::

Restrict s a ⇒

a → s a → s a

Associated class families to the rescue!

Sets as lists (finite maps) requires Eq (Ord) of elements!

instance Set [] where

class Eq a ⇒ Restrict [] a

empty = []

insert x s | x ‘elem‘ s = s
| otherwise = x : s

instance Eq a ⇒ Restrict [] a -- Tiresome instance

Manuel Chakravarty Type Families in Haskell

A fairly wild idea: Class Families

John Hughes’ Restricted Data Types

The following general set API type is too general:

class Set s where
class Restrict s a -- associated class indexed by s
empty :: s a
insert :: Restrict s a ⇒ a → s a → s a

Associated class families to the rescue!

Sets as lists (finite maps) requires Eq (Ord) of elements!

instance Set [] where
class Eq a ⇒ Restrict [] a
empty = []

insert x s | x ‘elem‘ s = s
| otherwise = x : s

instance Eq a ⇒ Restrict [] a -- Tiresome instance

Manuel Chakravarty Type Families in Haskell

Implementation Status

Where are we right now?
• Data families

I Fully implemented in GHC 6.7
• Synonym families

I Partially implemented; working at it
I We think we know how to perform type inference with type

families and GADTs
• Class families

I Just an idea at this stage (should be easy to implement)

Further information
• User manual
http://haskell.org/haskellwiki/GHC/Indexed_types

• Implementation notes
http://hackage.haskell.org/trac/ghc/wiki/TypeFunctions

Manuel Chakravarty Type Families in Haskell

