Type Families in Haskell

Manuel M. T. Chakravarty
University of New South Wales

Joint work with
Gabriele Keller
Simon Peyton Jones
Simon Marlow

...and more recently
Tom Schrijvers
Martin Sulzmann

.‘)1)

PLS

Manuel Chakravarty Type Families in Haskell

Type classes
e Most innovative feature of Haskell

e Proved useful beyond simple overloading of equality,
ordering, and arithmetic functions

D

PLS

Manuel Chakravarty Type Families in Haskell

Motivation

Type classes
e Most innovative feature of Haskell

e Proved useful beyond simple overloading of equality,
ordering, and arithmetic functions

Multi-parameter type classes
e Haskell 98 permits only a single parameter to a type class
e Multiple parameters can require a lot of type annotations

¢ Functional dependencies were proposed as a solution:

» Led to a lot of interesting type level programming
» But their syntax is relational, not functional
» And they have limits

D 2

PLS

Manuel Chakravarty Type Families in Haskell

Motivation

Type classes
e Most innovative feature of Haskell

e Proved useful beyond simple overloading of equality,
ordering, and arithmetic functions

Multi-parameter type classes
e Haskell 98 permits only a single parameter to a type class
e Multiple parameters can require a lot of type annotations

¢ Functional dependencies were proposed as a solution:

» Led to a lot of interesting type level programming
» But their syntax is relational, not functional
» And they have limits

C++ success story
e typedefs in classes = traits classes in the STL P

PLS
Manuel Chakravarty Type Families in Haskell

Type CI

Ad-hoc polymorphism (overloading)

class Eg a where
(==) = a —- a — Bool

&

PLS

Manuel Chakravarty Type Families in Haskell

Type CI

Ad-hoc polymorphism (overloading)

class Eg a where

(==) = a = a — Bool
instance Eg Int where

(==) = primEqlnt

&

PLS

Manuel Chakravarty Type Families in Haskell

Type CI

Ad-hoc polymorphism (overloading)

class Eg a where
(==) = a = a — Bool
instance Eg Int where
(==) = primEqlnt
instance (Eq a, Eqb) = Eq (a, b) where
(x1, y1) == (x2, y2) = (01 ==) && (y1 == y2)

&

PLS

Manuel Chakravarty Type Families in Haskell

Type Cla

Ad-hoc polymorphism (overloading)

class Eg a where
(==) = a —- a — Bool
instance Eg Int where
(==) = primEqlnt
instance (Eq a, Eqb) = Eq (a, b) where
(x1, y1) == (x2, y2) = (01 ==) && (y1 == y2)

Full type of equality is. . .

(==)= Eqa = a — a — Bool -- qualified type

Usage: (2, (3, 4)) == (2, (3, 4))

4 1)[)

PLS

Manuel Chakravarty Type Families in Haskell

Why Ty

A motivating programming problem

e Family of containers with different representation types
(e.g., lists, trees, arrays, bit sets)

e Representation type determines the element type plus
additional constraints

&

PLS

Manuel Chakravarty Type Families in Haskell

Why Type Families?

A motivating programming problem

e Family of containers with different representation types
(e.g., lists, trees, arrays, bit sets)

e Representation type determines the element type plus
additional constraints

Type of the insertion function

insert . Collectsc = Elemc¢ — ¢ — ¢

where
e Collects c asserts that ¢ represents a collection
e Elem c maps c to its element type

For example,
Elem [e] = e for Collects [e]
Elem BitSet = Char for Collects BitSet P

PLS

Manuel Chakravarty Type Families in Haskell

With associated type synonym families

class Collects ¢ where

empty = ¢
insert . Elemc — ¢ — ¢
toList : ¢ — [Elem c]

instance Eq e = Collects [e] where
instance Collects BitSet where

instance (Collects ¢, Hashable (Elem ¢)) =
Collects (Array Int ¢) where

Manuel Chakravarty Type Families in Haskell

‘)A/

) PLS

With associated type synonym families

class Collects ¢ where
type Elemc -- definition varies with ¢
empty . ¢
insert . Elemc — ¢ — ¢
toList : ¢ — [Elem c]

instance Eq e = Collects [e] where
type Elem [e] = e

instance Collects BitSet where
type Elem BitSet = Char

instance (Collects ¢, Hashable (Elem ¢)) =
Collects (Array Int ¢) where
type Elem (Array Int ¢) = Elem ¢

,‘)l)

PLS

Manuel Chakravarty Type Families in Haskell

class Collects ¢ where
type Elem c
empty i ¢
insert . Elemc — ¢ — ¢
toList = ¢ — [Elem c]

foldr : (a - b — b) — b — [a] — b --standard function

Make a collection from a list of elements

fromList 777
fromList | = foldr insert empty |

,‘)A)

PLS

Manuel Chakravarty Type Families in Haskell

class Collects ¢ where
type Elem c
empty i ¢
insert . Elemc — ¢ — ¢
toList : ¢ — [Elem c]

foldr : (a - b — b) — b — [a] — b --standard function

Make a collection from a list of elements

fromList :: Collectsc = [Elemc] — ¢
fromList | = foldr insert empty |

,‘)l)

PLS

Manuel Chakravarty Type Families in Haskell

Merge elements of one collection into another

merge :: (Collects cl, Collects c2, ?777)
=cl -5 2 — 2
merge cl ¢c2 = foldr insert c2 (toList c1)

Make a collection from a list of elements

fromList :: Collectsc = [Elemc] — ¢
fromList | = foldr insert empty |

.‘)1)

PLS

Manuel Chakravarty Type Families in Haskell

Merge elements of one collection into another

merge . (Collects cl, Collects c2, Elem cl ~ Elem c2)
=cl — c2 = 2
merge cl ¢2 = foldr insert c2 (toList c1)

o We need equality constraints

Make a collection from a list of elements

fromList :: Collectsc = [Elemc] — ¢
fromList | = foldr insert empty |

D 2

PLS

Manuel Chakravarty Type Families in Haskell

Type In

Haskell 98 type classes define families of values
Overloaded functions are typed-indexed families of values:

(+) = Numa = a — a — a

~

addlnt :: Int — Int — Int
addFloat :: Float — Float — Float

&

PLS

Manuel Chakravarty Type Families in Haskell

Type Ind

Haskell 98 type classes define families of values
Overloaded functions are typed-indexed families of values:

(+) = Numa = a — a — a

~

addlnt :: Int — Int — Int
addFloat :: Float — Float — Float

We add families of types

Typed-indexed families of types map index types to family
members:
Elem [e] = e
Elem = % — % ~ Elem BitSet = Char

D 2

) PLS

Manuel Chakravarty Type Families in Haskell

Type families need not be associated
o We associated the family Elem with the class Collects

e Such associations are often convenient, but they are not
essential (familiy declarations in classes are just sugar)

,‘)A)

PLS

Manuel Chakravarty Type Families in Haskell

Type families need not be associated
o We associated the family Elem with the class Collects

e Such associations are often convenient, but they are not
essential (familiy declarations in classes are just sugar)

Bounded lists

data Zero; data Succ a; -- empty data type representing
-- Peano numbers as types
-- adding type numbers
type family Add Dok ok)k
type instance Add Zero y =y
type instance Add (Succ x) y = Succ (Add x y)

data BList n a where -- bounded lists as GADT
BNil :: BList Zero a
BCons :: a — BListna — BList (Succn) a P

PLS

Manuel Chakravarty Type Families in Haskell

 Data Type Families

Unboxed arrays
e Boxed array: array of pointers to heap objects
e Unboxed array: array of basic types (as in C)

WP

PLS

Manuel Chakravarty Type Families in Haskell

Data Type Families

Unboxed arrays

e Boxed array: array of pointers to heap objects
e Unboxed array: array of basic types (as in C)

Flattened arrays
Array representation depends on the element type:

data family Array e -- family declaration (lifted)
data instance Array Int = IntArr UnboxedIntArr

data instance Array Float = IntArr UnboxedFloatArr
data instance Array (a, b) = PairArr (Array a) (Array b)

D 2

PLS

Manuel Chakravarty Type Families in Haskell

Data Type Families

Unboxed arrays

e Boxed array: array of pointers to heap objects
e Unboxed array: array of basic types (as in C)

Flattened arrays
Array representation depends on the element type:

data family Array e -- family declaration (lifted)
data instance Array Int = IntArr UnboxedIntArr
data instance Array Float = IntArr UnboxedFloatArr
data instance Array (a, b) = PairArr (Array a) (Array b)
data instance Array (Array a) = ArrArr Segd (Array a)
type Segd = Array Int
L1, 2, [, [3,4,5:]:] = ArrArr [:2,0,3:] [:1,2,3,4, 5] J ;)L‘S)

Manuel Chakravarty Type Families in Haskell

A fairly

John Hughes’ Restricted Data Types
The following general set API type is too general:

class Ser s where

empty T sa
insert : a — sa — sa

&

PLS

Manuel Chakravarty Type Families in Haskell

A fairly wild idea: Class Families

John Hughes’ Restricted Data Types
The following general set API type is too general:

class Ser s where

empty T sa
insert : a — sa — sa

Sets as lists (finite maps) requires Eq (Ord) of elements!

instance Set [| where

empty
insertx s | x ‘elem‘ s

| otherwise

Il
= “

D 2

PLS

Manuel Chakravarty Type Families in Haskell

A fairly wild idea: Class Families

John Hughes’ Restricted Data Types
The following general set API type is too general:

class Ser s where

class Restrict s a -- associated class indexed by s
empty T sa
insert © Restrictsa = a — sa — sa

Associated class families to the rescue!

Sets as lists (finite maps) requires Eq (Ord) of elements!

instance Sez [| where
class Ega = Restrict[] a

empty = [
insertx s | x ‘elem‘ s =5
| otherwise =x:s
instance Eq a = Restrict [] a -- Tiresome instance ;)LZ

Manuel Chakravarty Type Families in Haskell

Implementation Status

Where are we right now?

¢ Data families
» Fully implemented in GHC 6.7
e Synonym families
» Partially implemented; working at it

» We think we know how to perform type inference with type
families and GADTs

e Class families
» Just an idea at this stage (should be easy to implement)

Further information

e User manual
http://haskell.org/haskellwiki/GHC/Indexed_types

¢ Implementation notes
http://hackage.haskell.org/trac/ghc/wiki/TypeFunctions | 4)®

4 PLS
Manuel Chakravarty Type Families in Haskell

