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Type classes
e Most innovative feature of Haskell

e Proved useful beyond simple overloading of equality,
ordering, and arithmetic functions
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Motivation

Type classes
e Most innovative feature of Haskell

e Proved useful beyond simple overloading of equality,
ordering, and arithmetic functions

Multi-parameter type classes
e Haskell 98 permits only a single parameter to a type class
e Multiple parameters can require a lot of type annotations

¢ Functional dependencies were proposed as a solution:

» Led to a lot of interesting type level programming
» But their syntax is relational, not functional
» And they have limits
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Motivation

Type classes
e Most innovative feature of Haskell

e Proved useful beyond simple overloading of equality,
ordering, and arithmetic functions

Multi-parameter type classes
e Haskell 98 permits only a single parameter to a type class
e Multiple parameters can require a lot of type annotations

¢ Functional dependencies were proposed as a solution:

» Led to a lot of interesting type level programming
» But their syntax is relational, not functional
» And they have limits

C++ success story
e typedefs in classes = traits classes in the STL P
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Type CI

Ad-hoc polymorphism (overloading)

class Eg a where
(==) = a —- a — Bool
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Type CI

Ad-hoc polymorphism (overloading)

class Eg a where

(==) = a = a — Bool
instance Eg Int where

(==) = primEqlnt
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Type CI

Ad-hoc polymorphism (overloading)

class Eg a where
(==) = a = a — Bool
instance Eg Int where
(==) = primEqlnt
instance (Eq a, Eqb) = Eq (a, b) where
(x1, y1) == (x2, y2) = (01 == ) && (y1 == y2)
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Type Cla

Ad-hoc polymorphism (overloading)

class Eg a where
(==) = a —- a — Bool
instance Eg Int where
(==) = primEqlnt
instance (Eq a, Eqb) = Eq (a, b) where
(x1, y1) == (x2, y2) = (01 == ) && (y1 == y2)

Full type of equality is. . .

(==)= Eqa = a — a — Bool -- qualified type

Usage: (2, (3, 4)) == (2, (3, 4))

4 1)[)

PLS

Manuel Chakravarty Type Families in Haskell



Why Ty

A motivating programming problem

e Family of containers with different representation types
(e.g., lists, trees, arrays, bit sets)

e Representation type determines the element type plus
additional constraints
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Why Type Families?

A motivating programming problem

e Family of containers with different representation types
(e.g., lists, trees, arrays, bit sets)

e Representation type determines the element type plus
additional constraints

Type of the insertion function

insert . Collectsc = Elemc¢ — ¢ — ¢

where
e Collects c asserts that ¢ represents a collection
e Elem c maps c to its element type

For example,
Elem [e] = e for Collects [e]
Elem BitSet = Char for Collects BitSet P
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With associated type synonym families

class Collects ¢ where

empty = ¢
insert . Elemc — ¢ — ¢
toList : ¢ — [Elem c]

instance Eq e = Collects [e] where
instance Collects BitSet where

instance (Collects ¢, Hashable (Elem ¢)) =
Collects (Array Int ¢) where

Manuel Chakravarty Type Families in Haskell
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With associated type synonym families

class Collects ¢ where
type Elemc -- definition varies with ¢
empty . ¢
insert . Elemc — ¢ — ¢
toList : ¢ — [Elem c]

instance Eq e = Collects [e] where
type Elem [e] = e

instance Collects BitSet where
type Elem BitSet = Char

instance (Collects ¢, Hashable (Elem ¢)) =
Collects (Array Int ¢) where
type Elem (Array Int ¢) = Elem ¢
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class Collects ¢ where
type Elem c
empty i ¢
insert . Elemc — ¢ — ¢
toList = ¢ — [Elem c]

foldr : (a - b — b) — b — [a] — b --standard function

Make a collection from a list of elements

fromList 777
fromList | = foldr insert empty |
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class Collects ¢ where
type Elem c
empty i ¢
insert . Elemc — ¢ — ¢
toList : ¢ — [Elem c]

foldr : (a - b — b) — b — [a] — b --standard function

Make a collection from a list of elements

fromList :: Collectsc = [Elemc] — ¢
fromList | = foldr insert empty |
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Merge elements of one collection into another

merge :: (Collects cl, Collects c2, ?777)
=cl -5 2 — 2
merge cl ¢c2 = foldr insert c2 (toList c1)

Make a collection from a list of elements

fromList :: Collectsc = [Elemc] — ¢
fromList | = foldr insert empty |
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Merge elements of one collection into another

merge . (Collects cl, Collects c2, Elem cl ~ Elem c2)
=cl — c2 = 2
merge cl ¢2 = foldr insert c2 (toList c1)

o We need equality constraints

Make a collection from a list of elements

fromList :: Collectsc = [Elemc] — ¢
fromList | = foldr insert empty |
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Type In

Haskell 98 type classes define families of values
Overloaded functions are typed-indexed families of values:

(+) = Numa = a — a — a

~

addlnt :: Int — Int — Int
addFloat :: Float — Float — Float
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Type Ind

Haskell 98 type classes define families of values
Overloaded functions are typed-indexed families of values:

(+) = Numa = a — a — a

~

addlnt :: Int — Int — Int
addFloat :: Float — Float — Float

We add families of types

Typed-indexed families of types map index types to family
members:
Elem [e] = e
Elem = % — % ~ Elem BitSet = Char
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Type families need not be associated
o We associated the family Elem with the class Collects

e Such associations are often convenient, but they are not
essential (familiy declarations in classes are just sugar)
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Type families need not be associated
o We associated the family Elem with the class Collects

e Such associations are often convenient, but they are not
essential (familiy declarations in classes are just sugar)

Bounded lists

data Zero; data Succ a; -- empty data type representing
-- Peano numbers as types
-- adding type numbers
type family Add Dok ok )k
type instance Add Zero y =y
type instance Add (Succ x) y = Succ (Add x y)

data BList n a where -- bounded lists as GADT
BNil :: BList Zero a
BCons :: a — BListna — BList (Succn) a P
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 Data Type Families

Unboxed arrays
e Boxed array: array of pointers to heap objects
e Unboxed array: array of basic types (as in C)

WP

PLS

Manuel Chakravarty Type Families in Haskell



Data Type Families

Unboxed arrays

e Boxed array: array of pointers to heap objects
e Unboxed array: array of basic types (as in C)

Flattened arrays
Array representation depends on the element type:

data family Array e -- family declaration (lifted)
data instance Array Int = IntArr UnboxedIntArr

data instance Array Float = IntArr UnboxedFloatArr
data instance Array (a, b) = PairArr (Array a) (Array b)
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Data Type Families

Unboxed arrays

e Boxed array: array of pointers to heap objects
e Unboxed array: array of basic types (as in C)

Flattened arrays
Array representation depends on the element type:

data family Array e -- family declaration (lifted)
data instance Array Int = IntArr UnboxedIntArr
data instance Array Float = IntArr UnboxedFloatArr
data instance Array (a, b) = PairArr (Array a) (Array b)
data instance Array (Array a) = ArrArr Segd (Array a)
type Segd = Array Int
L1, 2, [, [3,4,5:]:] = ArrArr [:2,0,3:] [:1,2,3,4, 5] J ;)L‘S)
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A fairly

John Hughes’ Restricted Data Types
The following general set API type is too general:

class Ser s where

empty T sa
insert : a — sa — sa

&

PLS

Manuel Chakravarty Type Families in Haskell



A fairly wild idea: Class Families

John Hughes’ Restricted Data Types
The following general set API type is too general:

class Ser s where

empty T sa
insert : a — sa — sa

Sets as lists (finite maps) requires Eq (Ord) of elements!

instance Set [ | where

empty
insertx s | x ‘elem‘ s

| otherwise

Il
= “
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A fairly wild idea: Class Families

John Hughes’ Restricted Data Types
The following general set API type is too general:

class Ser s where

class Restrict s a -- associated class indexed by s
empty T sa
insert © Restrictsa = a — sa — sa

Associated class families to the rescue!

Sets as lists (finite maps) requires Eq (Ord) of elements!

instance Sez [| where
class Ega = Restrict[] a

empty = [
insertx s | x ‘elem‘ s =5
| otherwise =x:s
instance Eq a = Restrict [] a -- Tiresome instance ;)LZ
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Implementation Status

Where are we right now?

¢ Data families
» Fully implemented in GHC 6.7
e Synonym families
» Partially implemented; working at it

» We think we know how to perform type inference with type
families and GADTs

e Class families
» Just an idea at this stage (should be easy to implement)

Further information

e User manual
http://haskell.org/haskellwiki/GHC/Indexed_types

¢ Implementation notes
http://hackage.haskell.org/trac/ghc/wiki/TypeFunctions | 4)®
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