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Background

I Original Bondi code by Jay (2004).

I Pure pattern calculus by Jay and Kesner (2005).

I The role of data structures is not well described in many
calculi.

I There are four calculi that explore the role of data structures
in the context of pattern matching.
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The project goals

I Create modes of operation in Bondi

I Remove the types from some Bondi operational modes

I To implement four calculi as different operational modes

I Use implementaton to check the theory

I Explore the relationship with LISP
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Structure of the presentation

I Data structures and the compound calculus - Demo

I Pattern matching and the static pattern calculus - Demo

I Dynamic patterns with the pure pattern calculus - Demo

I Conclusions and Future Work
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Traditional Data Structures

There are many forms data structures, consider:

I Pairs: pair x y

I Lists: cons h t | nil

I Trees: node x1 x2 ... xn | leaf y

However, they are all built from the same structural foundations:
atoms and compounds.
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Generic Data Sructures

I Atoms:
I x
I nil

I Compounds:

I pair x y
I cons h t
I node x1 x2 ... xn

I leaf x
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The Compound Calculus

Handle any data structure by focusing on atoms and compounds.

I Is something a compound: ispair (“ispair?” in LISP)

I Splitting a compound: car cdr

I Identifying data structures by constructor: eqcons (“eq?” in
LISP)
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Compound calculus in Bondi

I First and second projections of a compound:
I car;;
I cdr;;

I Head and tail of a list:
I let head = fun x -> cdr (car x);;
I let tail = fun x -> cdr x;;

I Is something a list:
I let islist = fun x -> eqcons cons (car (car x));;

And something a little tricky, the safehead function: let
safehead = fun x -> (eqcons nil x) (x) ((ispair x)

((ispair (car x)) ((eqcons cons (car (car x))) (cdr

(car x)) ("Not a list.")) ("Not a list.")) ("Not a

list."));;
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Pattern Matching theory

Pattern matching in theory:

I ispair = u v → true | u → false

I car = u v → u

I cdr = u v → v

I eqcons x̂ = x̂ → true | ŷ → false

Restriction on patterns: must be data structures.
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Static Patterns in Bondi

We can write pattern matching functions:

I let ispair = | \x \y -> ‘‘True’’

| \z -> ‘‘False’’;;

I let car = | \x \y -> x;;

I let cdr = | \x \y -> y;;

I let eqconsnil = | nil -> ‘‘True’’

| \z -> ‘‘False’’;;

Much cleaner syntax for complex pattern matching:
let safehead = | nil -> nil

| cons \h \t -> h

| \z -> ‘‘Not a list.’’;;
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Difficulties with variables in the theory

The binding of variables has two complications:

I Binding of variables is immediate

I Scoping is non-trivial

We have the solution by explicitly declaring the binding variables.
So now we can write eqcons:
eqcons = [x ]x̂ → []x → true | [y ]ŷ → false
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Anything can be a pattern in Bondi

So now anything can be a pattern and we can write our eqcons
function:

let eq = | \x -> | x -> ‘‘True’’

| \y -> ‘‘False’’

And some other functions with dynamic patterns:

let elim = | \x -> | x \y -> y

| \z -> z

letrec update = | \p -> | \f ->

| p \x -> p (f x)

| \u \v -> (update p f u) (update p f v)

| \z -> z;;
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Conclusions

I No problems in the theory.

I Dynamic mode switching in Bondi.

I Pure (untyped) Bondi.

I Interpreters for four calculi:

1. Lambda calculus
2. Compound calculus
3. Static pattern calculus
4. Dynamic pattern calculus

I Bondi Zero.
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Future Work

I Typed Bondi for each calculus.

I Updating Bondi for the full pattern calculus.

I Type inference.

I Objects and object orientation in Bondi.

I Subtypes and inheritance in Bondi.

I A pattern calculus based programming language.

Contemporary work:

I Barry Jay is refining the pattern calculus theory in many areas
mentioned above.

I Matt Roberts is developing a compiler for the pattern calculus.

I Clara Murdaca is working on linking Bondi to databases.
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