
Introduction
Data Structures are compounds

Static Pattern Matching
Dynamic Patterns

Conclusions and Future Work

Pure Bondi with datatypes and patterns

Thomas Given-Wilson

June 12, 2007

Thomas Given-Wilson Pure Bondi with datatypes and patterns

Introduction
Data Structures are compounds

Static Pattern Matching
Dynamic Patterns

Conclusions and Future Work

Background

I Original Bondi code by Jay (2004).

I Pure pattern calculus by Jay and Kesner (2005).

I The role of data structures is not well described in many
calculi.

I There are four calculi that explore the role of data structures
in the context of pattern matching.

Thomas Given-Wilson Pure Bondi with datatypes and patterns

Introduction
Data Structures are compounds

Static Pattern Matching
Dynamic Patterns

Conclusions and Future Work

The project goals

I Create modes of operation in Bondi

I Remove the types from some Bondi operational modes

I To implement four calculi as different operational modes

I Use implementaton to check the theory

I Explore the relationship with LISP

Thomas Given-Wilson Pure Bondi with datatypes and patterns

Introduction
Data Structures are compounds

Static Pattern Matching
Dynamic Patterns

Conclusions and Future Work

Structure of the presentation

I Data structures and the compound calculus - Demo

I Pattern matching and the static pattern calculus - Demo

I Dynamic patterns with the pure pattern calculus - Demo

I Conclusions and Future Work

Thomas Given-Wilson Pure Bondi with datatypes and patterns

Introduction
Data Structures are compounds

Static Pattern Matching
Dynamic Patterns

Conclusions and Future Work

Traditional Data Structures

There are many forms data structures, consider:

I Pairs: pair x y

I Lists: cons h t | nil

I Trees: node x1 x2 ... xn | leaf y

However, they are all built from the same structural foundations:
atoms and compounds.

Thomas Given-Wilson Pure Bondi with datatypes and patterns

Introduction
Data Structures are compounds

Static Pattern Matching
Dynamic Patterns

Conclusions and Future Work

Generic Data Sructures

I Atoms:
I x
I nil

I Compounds:

I pair x y
I cons h t
I node x1 x2 ... xn

I leaf x

Thomas Given-Wilson Pure Bondi with datatypes and patterns

Introduction
Data Structures are compounds

Static Pattern Matching
Dynamic Patterns

Conclusions and Future Work

The Compound Calculus

Handle any data structure by focusing on atoms and compounds.

I Is something a compound: ispair (“ispair?” in LISP)

I Splitting a compound: car cdr

I Identifying data structures by constructor: eqcons (“eq?” in
LISP)

Thomas Given-Wilson Pure Bondi with datatypes and patterns

Introduction
Data Structures are compounds

Static Pattern Matching
Dynamic Patterns

Conclusions and Future Work

Compound calculus in Bondi

I First and second projections of a compound:
I car;;
I cdr;;

I Head and tail of a list:
I let head = fun x -> cdr (car x);;
I let tail = fun x -> cdr x;;

I Is something a list:
I let islist = fun x -> eqcons cons (car (car x));;

And something a little tricky, the safehead function: let
safehead = fun x -> (eqcons nil x) (x) ((ispair x)

((ispair (car x)) ((eqcons cons (car (car x))) (cdr

(car x)) ("Not a list.")) ("Not a list.")) ("Not a

list."));;

Thomas Given-Wilson Pure Bondi with datatypes and patterns

Introduction
Data Structures are compounds

Static Pattern Matching
Dynamic Patterns

Conclusions and Future Work

Pattern Matching theory

Pattern matching in theory:

I ispair = u v → true | u → false

I car = u v → u

I cdr = u v → v

I eqcons x̂ = x̂ → true | ŷ → false

Restriction on patterns: must be data structures.

Thomas Given-Wilson Pure Bondi with datatypes and patterns

Introduction
Data Structures are compounds

Static Pattern Matching
Dynamic Patterns

Conclusions and Future Work

Static Patterns in Bondi

We can write pattern matching functions:

I let ispair = | \x \y -> ‘‘True’’

| \z -> ‘‘False’’;;

I let car = | \x \y -> x;;

I let cdr = | \x \y -> y;;

I let eqconsnil = | nil -> ‘‘True’’

| \z -> ‘‘False’’;;

Much cleaner syntax for complex pattern matching:
let safehead = | nil -> nil

| cons \h \t -> h

| \z -> ‘‘Not a list.’’;;

Thomas Given-Wilson Pure Bondi with datatypes and patterns

Introduction
Data Structures are compounds

Static Pattern Matching
Dynamic Patterns

Conclusions and Future Work

Difficulties with variables in the theory

The binding of variables has two complications:

I Binding of variables is immediate

I Scoping is non-trivial

We have the solution by explicitly declaring the binding variables.
So now we can write eqcons:
eqcons = [x]x̂ → []x → true | [y]ŷ → false

Thomas Given-Wilson Pure Bondi with datatypes and patterns

Introduction
Data Structures are compounds

Static Pattern Matching
Dynamic Patterns

Conclusions and Future Work

Anything can be a pattern in Bondi

So now anything can be a pattern and we can write our eqcons
function:

let eq = | \x -> | x -> ‘‘True’’

| \y -> ‘‘False’’

And some other functions with dynamic patterns:

let elim = | \x -> | x \y -> y

| \z -> z

letrec update = | \p -> | \f ->

| p \x -> p (f x)

| \u \v -> (update p f u) (update p f v)

| \z -> z;;

Thomas Given-Wilson Pure Bondi with datatypes and patterns

Introduction
Data Structures are compounds

Static Pattern Matching
Dynamic Patterns

Conclusions and Future Work

Conclusions

I No problems in the theory.

I Dynamic mode switching in Bondi.

I Pure (untyped) Bondi.

I Interpreters for four calculi:

1. Lambda calculus
2. Compound calculus
3. Static pattern calculus
4. Dynamic pattern calculus

I Bondi Zero.

Thomas Given-Wilson Pure Bondi with datatypes and patterns

Introduction
Data Structures are compounds

Static Pattern Matching
Dynamic Patterns

Conclusions and Future Work

Future Work

I Typed Bondi for each calculus.

I Updating Bondi for the full pattern calculus.

I Type inference.

I Objects and object orientation in Bondi.

I Subtypes and inheritance in Bondi.

I A pattern calculus based programming language.

Contemporary work:

I Barry Jay is refining the pattern calculus theory in many areas
mentioned above.

I Matt Roberts is developing a compiler for the pattern calculus.

I Clara Murdaca is working on linking Bondi to databases.

Thomas Given-Wilson Pure Bondi with datatypes and patterns

Introduction
Data Structures are compounds

Static Pattern Matching
Dynamic Patterns

Conclusions and Future Work

Bibliography

Jay, C. B. 2004, The pattern calculus, ACM Transactions on
Programming Languages and Systems (TOPLAS)
26(6), 911–937.

Jay, C. B. 2007, Untyped pattern calculus: Compound calculus.
Retrieved 20 April 2007, from
http://www-staff.it.uts.edu.au/ cbj/draft-book/pc sem02.pdf.

Jay, C. B. and Kesner, D. 2005, Pure pattern calculus. Retrieved
10 April 2006, from
www.staff.it.uts.edu.au/cbj/Publications/purepatterns.pdf.

Thomas Given-Wilson Pure Bondi with datatypes and patterns

	Introduction
	Data Structures are compounds
	Static Pattern Matching
	Dynamic Patterns
	Conclusions and Future Work

