Implementing a DSL with Stratego

Leonard G. C. Hamey and Shirley N. Goldrei
Department of Computing
Macquarie University
Sydney, Australia

10:25-10:45am

i Background

= Re-implement DSL
= Original implementation:
= 20 years ago
= Domain expert (first author)

= Re-implemented today using Stratego/XT
= Same domain expert

= Language essentially the same
= The compiler design goals are a little different

= Diary of development experience
=« Basis of LDTA paper

geljos]

& Domain

= Low Level (pixel level) Computer Vision
= Edge Detection
= Detection of corners, ridges or blobs
= Used to help identify objects or track moving objects

= Algorithms which compute new pixel values

based on neighbouring values
= Kernel computation including Convolution

macquarie

Example: Sobel operator
for Edge detection

Example: Sobel operator
for Edge detection

'.=

i Apply Language

= Subset of Ada

= Arithmetic and boolean expressions

= control flow structures

= primitive data types: byte, real and integer

« multidimensional array types with index ranges
= procedures (no functions)

i Apply Language: features

= Abstract Data Type window

= represents a rectangular region of the image on
which the kernel operation will be performed

= Procedure special formal parameter
declaration:

= window of 7ype
= window (Range, Range) of Type border expr

Lo

i Kernel Operations

= 3X3 kernel

= three example
: window locations

x top left corner
v right edge
z clear of all borders

geljos]

i Kernel Operations

= In general, 9

regions
= E has no border Al B C
considerations
= Others have Ol 3
differing border
G H I

considerations

= Small image
considerations

i Sobel in Apply

procedure sobel (from in window (-1..1, -1..1)
of byte border O,
to: out wi ndow of byte)
is
X, Yy : integer;
begi n
X

from(-1,-1) + 2*fron(-1,
from' 1,-1) - 2*from(1, 0) - from 1,1);
from(-1,-1) + 2*fronm(O
from-1, 1) - 2*from(0, 1) - from(l, 1);

y !

if x <0then x := -x; end if;
if y<Otheny :=-y; endif;
X 1= X +vy;

if x > 255 then x := 255; end if;
to 1= x;

end sobel ;

geljos]

0) + from-1,1) -

,-1) + from(1,-1) -

‘ Sbel: Generated C Code

bl :‘E!E:‘f:?
i Nrc i
i o B

i { macauarie

i Compiler design goals

= Easily retarget different C APIs
= Generate readable C code
= Aid Verification

= Build confidence to allow integration in larger
applications

= Optimisation (with domain knowledge)
= Simplification
= Execution performance

[[plrg;;w

Implementing Apply in
Stratego/XT

= Translate Apply -> AST -> C

= Extended concrete syntax:
= AST transformations difficult to write
= @ indicates extension keyword/syntax
= Abstract Apply main loop: @apply
= Bridge Ada -> C gap: e.g. @cfor => C for loop
= Analysis and optimisation: @assert, @known

= ,—‘a!e_»“~—
I OHir
U o i1

)i
(H &

* AST example
Fi xLoop :
Appl yLoop(stnts) ->
For (
Var ("row'),
Int("0"),
Sub(Var ("height"),Int(1)),
For (
Var (" col um™"),
Int("0"),
Sub(Var ("width"),Int(1)),
stnt's
)

i Example

Fi xLoop2I ndex :
|[@pply ~looptype window (il..i2,j1..j2) loop ~s end |loop;]| ->
| [app_index := 0;
for rowin 0..height-1 | oop
@for colum @= 0; colum <= width-1; |oop
assert colum >= 0 and colum <= width - 1;
assert row >= 0 and row <= hei ght-1;

~s
if colum =-j1-1 and row >= -i1l and row < height - i2 then
colum := colum + width - j2 +j1 + 1;
app_index := app_index + width - j2 + j1 + 1;
el se
colum := colum + 1;
app_i ndex := app_index + 1;
end if;
end | oop;
end | oop;
app_index := -il * width - j1;

for rowin -il..height-i2-1 |oop
for colum in -j1..width-j2-1 | oop

~s
app_i ndex := app_i ndex + 1;
end | oop;
app_i ndex := app_index -il + i2;
end | oop;
11 wher e(<debug> ["extrene wi ndow dinmensions: ", i1, i2, j1,j2])

i Unexpected benefits

= Experimentation with language features

if (@nown(row < 255)) then x:=row,
el se x:=row % 255 end if;

= |l oop for row 1..100 do | oop

Generates:
@ssert row >= 1
@ssert row <= 100

[pirgg]m

i Implementation Comparison

= Original = Stratego/XT
= Lex = SDF
= Yacc = Stratego
= C =« Compact code more
= verbose code for tree powerful
traversal, matching and = Pretty Printer

transformation
= code output

i Implementation Comparison

= Original = Stratego/XT
= Explicit coding = Simple DS syntax for
= No concrete syntax matching and
transformation

= Change very complex
= Concrete syntax

= Reduce complexity by
composing small
transformations

Relative speed up compared to
reasonable hand-written code

Core-gcc PC-gcc SPARC- Core- B

gcc MSVC MSVC

Hand-=written 5.232

3.608 4.668 5.190 4.070

Old compiler 4429 3.438 6.366 4450 4.600
Speedup 15% 5% -36% 14% -13%

New Compiler 3.283 2.462 4.596 3.940 3.970
Speedup 37% 32% 2% 24% 2%

i Quantitative comparison of
development effort

= Evolution of Apply programming model and
language over 6 years

= Started as an API

= Platform specific language

= Ada based platform independent language
= C tree matching and transformation added

= Re-implementation took 5 months (based on
total logged elapsed time)

geljos]

10

i Qualitative Evaluation

= The project was a success!
= Short development time
= Met design goals

= Old C code was impossible to work with
(even by the original implementer!)
= language development stalled for 16 years

Lo

:_L Conclusion

= Comparing implementations of a single DSL

= Implemented by a Domain Expert

= “Excited by the fact that I could just say I want
to transform this bit of code to this other bit of

code”

= Implementation of a non-trivial non-
embedded DSL using transformation

geljos]

11

+

Questions?

macquarie

12

