
Generic programming with XML

Barry Jay
University of Technology, Sydney

12th June, 2007

Barry Jay University of Technology, Sydney Generic programming with XML



Pattern calculus

Pattern matching
combines functions and data structures
supports 5 forms of polymorphism (in type parameters,
sub-typing, path, pattern and structure)
supports all the usual programing styles (functional,
imperative, object-oriented, relational, . . . )
requires new ideas about binding variables, constructors
and typing
is the subject of some seminars and an emerging
monograph www-staff.it.uts.edu.au/~cbj/
draft-book/draft_chapters.pdf

is being implemented in bondi
has a mailing list pattern-calculus@ics.mq.edu.au

Barry Jay University of Technology, Sydney Generic programming with XML

www-staff.it.uts.edu.au/~cbj/draft-book/draft_chapters.pdf
www-staff.it.uts.edu.au/~cbj/draft-book/draft_chapters.pdf
pattern-calculus@ics.mq.edu.au


XML

This talk will use pattern calculus to program with XML paths, to
update

an arbitrary data structure
along an arbitrary XML path
by an arbitrary function

Barry Jay University of Technology, Sydney Generic programming with XML



Updating

Path and pattern polymorphism combine in the generic update

update : (X → Y ) → (X → X ) → Z → Z .

For example, if f adds 2% to a floating point number and
salary : float → salary is a salary constructor then

update salary f d

will update all salaries by 2% in a data structure d no matter
where they are stored (in pairs, lists, trees, etc).

Barry Jay University of Technology, Sydney Generic programming with XML



Some unusual patterns

The update program is given by

let update x f =
x λz → x (f z)

| λy λz → update x f y (update x f z)
| λz → z.

The first case has a pattern x z in which x is free and z is
bound. In update salary this reduces to the pattern
salary λx . Free variables in patterns yield pattern
polymorphism.
The second case has a pattern λy λz made by applying one
binding variable to another. It can match any compound data
structure e.g. a pair or a non-empty list.
The third case will match any atom, e.g. the empty list.

Barry Jay University of Technology, Sydney Generic programming with XML



The formalities

No, let’s not.

See the draft book or the slides for technical details

Barry Jay University of Technology, Sydney Generic programming with XML



The slogans

The slogans
Patterns are first class
Special cases have special types

The technical tricks:
binding variables = constructors = x̂ so that binders match
themselves when reducing patterns
separate binding from the patterns themselves:

λx .s = λx → s = [x ]x̂ → s

so that reduction of patterns doesn’t lose binders.
combine cases s : S and r : R if S is a specialisation of R.

Barry Jay University of Technology, Sydney Generic programming with XML



signPosts

Updating along an XML path is just like updating at a term,
except that XML paths have more structure, so make an ADT
for them.

datatype signPost
at a b c =
|Goal of c->b
at (a1,a2) (b1,b2) c =
|Stage of a1->b1 and signPost a2 b2 c
|Detour of detourPath a1 b1 and signPost a2 b2 c

datatype detourPath
at a b =
| DetourGoal of a->b and a->bool
at (a1,a2) (b1,b2) =
| DetourStage of a1->b1 and detourPath a2 b2

These have since been described as Generalised ADTs.

Barry Jay University of Technology, Sydney Generic programming with XML



Updates

let (checkd:(detourPath a b)->d->bool) p x =
match p with
| DetourGoal \P f -> check P f x
| DetourStage \P p1 -> check P (checkd p1) x

let (updates:(signPost a b c)->(c->c)->d->d ) s f x =
match s with
| Goal \P -> update P f x
| Stage \P s1 -> update P (updates s1 f) x
| Detour dp1 s1 ->

if (checkd dp1 x) (* the detour *)
then updates s1 f x

else x

Barry Jay University of Technology, Sydney Generic programming with XML



XPath, regular-expression style etc.

More complex patterns simply require more complex types
(than signPosts), e.g.

datatype regexp
at a b =
| Single of a->b
| Kstar of a->b
at (a1,a2)(b1,b2)
| Concat of regexp a1 b1 and regexp a2 b2
| Altern of regexp a1 b1 and regexp a2 b2;;

encodes patterns of regular-expression style.

Barry Jay University of Technology, Sydney Generic programming with XML



Conclusions

The challenge of programming with XML is pattern matching
with

a sophisticated approach to pattern matching
a more sophisticated data type for representing paths.

Barry Jay University of Technology, Sydney Generic programming with XML


	Introduction

