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Pattern calculus

Pattern matching
combines functions and data structures
supports 5 forms of polymorphism (in type parameters,
sub-typing, path, pattern and structure)
supports all the usual programing styles (functional,
imperative, object-oriented, relational, . . . )
requires new ideas about binding variables, constructors
and typing
is the subject of some seminars and an emerging
monograph www-staff.it.uts.edu.au/~cbj/
draft-book/draft_chapters.pdf

is being implemented in bondi
has a mailing list pattern-calculus@ics.mq.edu.au
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XML

This talk will use pattern calculus to program with XML paths, to
update

an arbitrary data structure
along an arbitrary XML path
by an arbitrary function
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Updating

Path and pattern polymorphism combine in the generic update

update : (X → Y ) → (X → X ) → Z → Z .

For example, if f adds 2% to a floating point number and
salary : float → salary is a salary constructor then

update salary f d

will update all salaries by 2% in a data structure d no matter
where they are stored (in pairs, lists, trees, etc).
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Some unusual patterns

The update program is given by

let update x f =
x λz → x (f z)

| λy λz → update x f y (update x f z)
| λz → z.

The first case has a pattern x z in which x is free and z is
bound. In update salary this reduces to the pattern
salary λx . Free variables in patterns yield pattern
polymorphism.
The second case has a pattern λy λz made by applying one
binding variable to another. It can match any compound data
structure e.g. a pair or a non-empty list.
The third case will match any atom, e.g. the empty list.
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The formalities

No, let’s not.

See the draft book or the slides for technical details
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The slogans

The slogans
Patterns are first class
Special cases have special types

The technical tricks:
binding variables = constructors = x̂ so that binders match
themselves when reducing patterns
separate binding from the patterns themselves:

λx .s = λx → s = [x ]x̂ → s

so that reduction of patterns doesn’t lose binders.
combine cases s : S and r : R if S is a specialisation of R.
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signPosts

Updating along an XML path is just like updating at a term,
except that XML paths have more structure, so make an ADT
for them.

datatype signPost
at a b c =
|Goal of c->b
at (a1,a2) (b1,b2) c =
|Stage of a1->b1 and signPost a2 b2 c
|Detour of detourPath a1 b1 and signPost a2 b2 c

datatype detourPath
at a b =
| DetourGoal of a->b and a->bool
at (a1,a2) (b1,b2) =
| DetourStage of a1->b1 and detourPath a2 b2

These have since been described as Generalised ADTs.
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Updates

let (checkd:(detourPath a b)->d->bool) p x =
match p with
| DetourGoal \P f -> check P f x
| DetourStage \P p1 -> check P (checkd p1) x

let (updates:(signPost a b c)->(c->c)->d->d ) s f x =
match s with
| Goal \P -> update P f x
| Stage \P s1 -> update P (updates s1 f) x
| Detour dp1 s1 ->

if (checkd dp1 x) (* the detour *)
then updates s1 f x

else x
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XPath, regular-expression style etc.

More complex patterns simply require more complex types
(than signPosts), e.g.

datatype regexp
at a b =
| Single of a->b
| Kstar of a->b
at (a1,a2)(b1,b2)
| Concat of regexp a1 b1 and regexp a2 b2
| Altern of regexp a1 b1 and regexp a2 b2;;

encodes patterns of regular-expression style.
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Conclusions

The challenge of programming with XML is pattern matching
with

a sophisticated approach to pattern matching
a more sophisticated data type for representing paths.
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