Stream Fusion
From Lists to Streams to Nothing at All

Il
>

Don Stewart

. o

Programming Tools Group Programming Languages and Systems pLs
Oxford University University of New South Wales

Duncan Coutts Roman Leshchinskiy

LISTS IN HASKELL

List processing can be beautiful:

f i Int — Int
fn=sum[kxm|k «— [l.n], m «— [1..k]]

Concise syntax for complex nested loops.

This is the code we want to write.

LISTS IN HASKELL

And this is the code we get...

f o Int# — Int#
fn = sumo
casel > n of

True — |[]
False —
let
go :: Int# — [Int]
gox = let
ds = casex == n of
True — []
False — go (x + 1)
in
casel > zx of
True — ds
False — let
toy = I# (x x y) : casey == z of
False — to (y+ 1)
. True — ds
in
. to1l
in
go 1)

LISTS IN HASKELL

GENERATING BETTER CODE

Problem:

=» Intermediate list is allocated, only to be immediately consumed!
=»> We need to combine the sum and list comprehension loops: fusion

=» But some key functions, like foldl (or sum) are hard to fuse using
existing systems

We need fusion for zips, foldls and concatMaps/list
comprehensions.

GENERATING BETTER CODE

STREAM FUSION

Final code under stream fusion:

f' o Int# — Int#
f'n = go01
where
go s k = casek > nof
False — casel > k of
True — gos(k + 1)
False — to (s + k) k(k + 1) 2
True — s
toskjm = casem > kof
False — to (s + (k *x m))kj(m + 1)
True — go s

No intermediate list. Better code. Faster code!

STREAM FUSION

INTRODUCTION TO FUSION

INTRODUCTION TO FUSION

THE BI1G IDEA: DEFORESTATION AND FUSION

|deally, pipelines on lists would just make one traversal
We'd write:

map £ . map g
and the compiler would emit:

map (f . g)
No side-effects, so its ok!
We can teach GHC to do this with rewrite rules:

(map/map fusion) V f g .
map f-map g — map (f-g)

But how to fuse other combinations of list functions?

THE BIG IDEA: DEFORESTATION AND FUSION

THE BI1G IDEA: DEFORESTATION AND FUSION

|deally, pipelines on lists would just make one traversal
We'd write:

map £ . map g
and the compiler would emit:

map (f . g)
No side-effects, so its ok!
We can teach GHC to do this with rewrite rules:

(map/map fusion) V f g .
map f-map g — map (f-g)

But how to fuse other combinations of list functions?

THE BIG IDEA: DEFORESTATION AND FUSION

7-A

THE BI1G IDEA: DEFORESTATION AND FUSION

|deally, pipelines on lists would just make one traversal
We'd write:

map £ . map g
and the compiler would emit:

map (f . g)
No side-effects, so its ok!
We can teach GHC to do this with rewrite rules:

(map/map fusion) V f g .
map f-map g — map (f-g)

But how to fuse other combinations of list functions?

THE BIG IDEA: DEFORESTATION AND FUSION

7-B

FUSION SYSTEMS

A variety of general purpose fusion systems exist

In particular:

(build /foldr fusion) V g k 2 .
foldrk z (build g) — gk z

(Gill, Launchbury, Peyton Jones ’93)

(destroy /unfoldr fusion) Vg f e .
destroy g (unfoldrf e) — g f e

(Svenningsson '02)

Write your functions in terms of these functions and they will fuse.

FUSION SYSTEMS

FUSION SYSTEMS

A variety of general purpose fusion systems exist

In particular:

(build /foldr fusion) V g k 2 .
foldrk z (build g) — gk z

(Gill, Launchbury, Peyton Jones ’93)

(destroy /unfoldr fusion) Vg f e .
destroy g (unfoldrf e) — g f e

(Svenningsson '02)

Write your functions in terms of these functions and they will fuse.

FUSION SYSTEMS

8-A

But some functions are hard to write using these functions.

The usual suspects:
« zip, zip With and friends
* foldl and other left folds (length, sum, minimum)
 nested list functions (concatMap, list comprehensions)

And for some other functions that can fuse, we don'’t get efficient
code (filter under destroy/unfoldr).

LIMITATIONS

Three steps to better code:

1. Convert functions on recursive list structures into functions on
non-recursive co-structures (the Stream data type).

2. Eliminate conversions between structures and co-structures

3. Then use general purpose optimisations to fuse the
co-structure code

That’s all there is!

STREAM FUSION

10

STEP 1: THE STREAM CO-STRUCTURE

STEP 1: THE STREAM CO-STRUCTURE

11

We need an explicit representation of the unfolding of a list:

data Stream a = 3s. Stream (s — Step a s) s
data Step a s = Done

| Yield a s

| Skip s

The internal state, s, of each stream is hidden.

Note the Stream constructor is a generalised unfoldr:

unfoldr :: Vs a. (s — Maybe (a,s)) — s — [a]

Stream :: Vs a. (s — Step a s) — s — Stream a

STREAMS: UNFOLDED LISTS

12

We need an explicit representation of the unfolding of a list:

data Stream a = 3s. Stream (s — Step a s) s
data Step a s = Done

| Yield a s

| Skip s

The internal state, s, of each stream is hidden.

Note the Stream constructor is a generalised unfoldr:

unfoldr :: Vs a. (s — Maybe (a,s)) — s — [a]

Stream :: Vs a. (s — Step a s) — s — Stream a

STREAMS: UNFOLDED LISTS 12-A

FUNCTIONS ON STREAMS

An example:

maps = (a — b) — Stream a — Stream b

maps f (Stream nexty sg) = Stream next sg
where
next s = case nexty s of
Done — Done
Skip s’ — Skip s’

Yield x s" — Yield (f x) s
maps Simply applies f to each yielded element.

The key trick is that next is always non-recursive

FUNCTIONS ON STREAMS

WRITING LIST FUNCTIONS

Assuming conversion to and from streams, we can write:

map :: (a — b) — |a] — [b]

map f = unstream - maps [- stream

Easy.

WRITING LIST FUNCTIONS

14

CONVERTION LISTS TO STREAMS

Build a stream by yielding each element of the original list:

stream :: |a] — Stream a
stream xsg = Stream next sy
where
next | | = Done

next (x : xs) = Yield x xs

Non-recursive stepper function.

CONVERTION LISTS TO STREAMS

15

CONVERTING STREAMS BACK TO LISTS

unstream :: Stream a — |a]

unstream (Stream next sg) = unfold sy
where
unfold s = case next s of
Done — []

Skip ' — unfold s’
Yield v s — x : unfold s’
=» Unfold the stream by calling the stream’s next function
=» Unlike unfoldr, streams can Skip.
=» This ensures all steppers are non-recursive.

All recursion is lifted out of the pipeline: no more fixpoints!

CONVERTING STREAMS BACK TO LISTS

STEP 2: REMOVE REDUNDANT CONVERSIONS

STEP 2: REMOVE REDUNDANT CONVERSIONS

17

Now, instead of consuming and producing a list once:

=» We consume a list, with stream, allocating Step constructors
=» Then transform the stream of Step values
=» Then, finally, destroy the stream, allocating list nodes (unstream)

If we compose two functions:

map f - map g =
unstream - maps f - stream - unstream - maps g - Stream

we can immediately see an opportunity to eliminate a conversion!

ONE STEP BACK... 18

Now, instead of consuming and producing a list once:

=» We consume a list, with stream, allocating Step constructors
=» Then transform the stream of Step values
=» Then, finally, destroy the stream, allocating list nodes (unstream)

If we compose two functions:

map f - map g =
unstream - maps f - stream - unstream - maps g - Stream

we can immediately see an opportunity to eliminate a conversion!

ONE STEP BACK... 18-A

Assuming stream - unstream is the identity on streams, we obtain:

(stream/unstream fusion)
Vs :: Streama .
stream (unstream s) +— s

And now GHC knows about this too — thanks to rewrite rules.

THE “FUSION” RULE

19

ELIMINATING CONVERSIONS BY THE RULES

Give the stream fusion rule, we have:

unstream - maps f - stream - unstream - maps g - Stream

{stream fusion} =

unstream - maps [- maps g - stream

=» The pipeline is now the composition of non-recursive stream functions
=» Not recursive list functions!
=>» unstream runs the loop that results.

ELIMINATING CONVERSIONS BY THE RULES

20

ELIMINATING CONVERSIONS BY THE RULES

Give the stream fusion rule, we have:

unstream - maps f - stream - unstream - maps g - Stream

{stream fusion} =

unstream - maps [- maps g - stream

=» The pipeline is now the composition of non-recursive stream functions
=» Not recursive list functions!
=>» unstream runs the loop that results.

ELIMINATING CONVERSIONS BY THE RULES 20-A

STEP 3: COMBINING STREAM FUNCTIONS

STEP 3: COMBINING STREAM FUNCTIONS

21

FUSING CO-STRUCTURES

Now we need to fuse the stream co-structure functions, to
eliminate intermediate Step values.

But, because all stream steppers are non-recursive:

The compiler will eliminate the intermediate values on its own!

Needs:
=» Inlining
-» case-of-case
=» constructor specialisation (new)
-» Nested code needs a couple more optimisations (see the paper)

And that’s it!

FUSING CO-STRUCTURES

22

EXAMPLES

EXAMPLES

23

FUSIBLE FILTERS AND ENUMERATIONS

filter :: (a — Bool) — Stream a — Stream a
filter p (Stream nexty sg) = Stream next sg
where

next s = case nexty s of

Done — Done
Skip s’ — Skip ¢
Yield x s'| p — Yield x s’

| otherwise — Skip s’

Skip here means a non-recursive filter.

FUSIBLE FILTERS AND ENUMERATIONS 24

RIGHT FOLDS

foldr :: (a — b— b) — b— Streama — b

foldr f z (Stream next sy) = go sy

where
go s = case next s of
Done — 2
Skip s — go s’

Yieldx s — fx (gos')

Folds consume streams, and are thus recursive.

RIGHT FOLDS

25

Easy.

LEFT FOLDS

foldl :: (b —a—b) — b— Stream a — b
foldl f z (Stream next sy) = go z sg
where
go z s = case next s of
Done — 2z
Skip s’ — gozs
Yield x s — go (f zx) s

LEFT FOLDS

26

zip :: Stream a — Stream b — Stream (a, b)

zip (Stream mext, sq,0) (Stream next, spg) = Stream next (sS40, Spo, Nothing)
where
next (sa, sb, Nothing) = case next, s, of
Done — Done

Skip s — Skip (s!, sy, Nothing)

a’?

/
Yield a s, — Skip (s., sy, Just a)

a’

next (s., sy, Just a) = case next, s, of
Done — Done
Skip sy — Skip (s!, s;, Just a)

Yield b s, — Yield (a, b) (s, s;, Nothing)

To zip two streams, we need a stepper that alternates between
each stream.

=» Requires loop state kept in the stream (Just/ Nothing)

=» This compiles to a loop that builds Maybe values each time around

=» Requires constructor specialisation to strip state away, generating
direct calls to worker functions instead

COMPLEX STREAM STATES: ZIPS

27

NESTED FUNCTIONS: CONCATMAP

concatMap :: (a — Stream b) — Stream a — Stream b
concatMap f (Stream next, s,0) = Stream next (sq,0, Nothing)
where
next (84, Nothing) =
case next, s, of
Done — Done
Skip s! — Skip (s!, Nothing)

a

Yield a s, — Skip (s., Just (f a))

next (sq, Just (Stream nexty sp)) =
case nexty s, of
Done — Skip (84, Nothing)
Skip s, — Skip (84, Just (Stream next; s;))
Yield b s; — Yield b (s,, Just (Stream next, s;))

Fusible with on its input and output list:

concatMap f = wunstream - concatMaps (stream - f) - stream

NESTED FUNCTIONS: CONCATMAP

COMPILING AND OPTIMISING STREAM CODE

COMPILING AND OPTIMISING STREAM CODE

29

COMPILING STREAMS CODE

Let’'s compile this sum of squares code:

sum mxm|m «— [l.n]]

Desugars to:

foldls (+) 0 (concatMaps (Am. returng (m * m))

(enumFromTos 1 n))

Using the streams desugaring of comprehensions (see paper).

COMPILING STREAMS CODE

30

COMPILING STREAMS CODE

Let’'s compile this sum of squares code:

sum mxm|m «— [l.n]]

Desugars to:

foldls (+) 0 (concatMaps (Am. returng (m * m))

(enumFromTos 1 n))

Using the streams desugaring of comprehensions (see paper).

COMPILING STREAMS CODE 30-A

Inline stream function:

let
nextepum 1|1 > n = Done
| otherwise = Yield i (i + 1)
nexte, (i, Nothing) =
case nextepym © of

Done — Done
Yield x i’ — let
nextys True = Yield (x = x) False
. next,.; False = Done
in

Skip (i, Just (Stream next,.: True))

nexten, (i, Just (Stream next s)) =
case next s of
Done — Skip (i, Nothing)
Yield y s" — Yield y (i, Just (Stream next s'))

go z s = case nextq, s of
Done — z
Skip s’ — gozs’
Yield s’ — go (z + x) s’
in
go 0 (1, Nothing)

COMPILING STREAMS CODE

31

APPLY CASE-OF-CASE

go z (i, Nothing) |1 > n

= z
| otherwise =
let
nextyer True = Yield (i * i) False
. next,q.; False = Done
in

go z (i + 1, Just (Stream nextr.: True))

go z (i, Just (Stream next s)) =
case nezxt s of
Done — go z (¢, Nothing)
Skip s’ — goz (i, Just (Stream next s’))
Yield x s — go (z + z)(3, Just (Stream next s"))

APPLY CASE-OF-CASE

32

APPLY CONSTRUCTOR SPECIALISATION
Using:

YV z 1. go z (i, Nothing) = go1 21
V z i next s.go z (i, Just (Stream next s)) = gos z i next s

We get:
goi1zi|li > n = z
| otherwise =
let
nextyer True = Yield (i % i) False
. next,.; False = Done
in
goz z (1 + 1) nextye; True
gos z 1 next s = case next s of
Done — go1 Z 1
Skip s’ — goa z i next s’

Yield x s' — gos (z + z) i next s’

APPLY CONSTRUCTOR SPECIALISATION

APPLY STATIC ARGUMENT TRANSFORMATION

go1zili >mn =z

| otherwise =
let

gob z True = gob (z + i % i) False
gob z False = goy z (1 + 1)
in

gob z True

Getting there...

APPLY STATIC ARGUMENT TRANSFORMATION

34

go1zi|i >n =z
| otherwise = goy (z +i%1) (i + 1)

Phew! The original nested loop becomes a fast, flat loop.

Needs those four key optimisations, and in particular, SpecConstr.

AND CLEANUP

35

AUTOMATED TESTING

AUTOMATED TESTING

36

STRICTNESS TESTING WITH QUICKCHECK

Needed to test for equivalence to a number of models:
=» Data.Stream == H'98
=» Data.Stream == Data.List
-» Data.Stream.List == H’98
-=» Data.Stream.List == Data.List

Perfect use case for QuickCheck!

913 QC properties later, feeling more confident that the code is
sane.

STRICTNESS TESTING WITH QUICKCHECK

37

A port of SmallCheck, to insert L into lists.

=» Breadth first search of the test case space
=» Test for correctness in the presence of _L for all lists up to depth n
=» Inserting and catching _L in random lists

Caught a lot of strictness differences wrt. to the models, none
found by usual QuickCheck!

And bugs (?) in Data.List...

BUT WE NEED TO BE CAREFUL ABOUT L

38

FOLDL’ NOT STRICT ENOUGH?

foldl’ from Data.List

foldl’ 2 (a —b—a) - a— [b] > a
foldl' f a |] = a
foldl' f a(x:xs)= leta’ = faxina ‘seq foldl' f o' xs

And our version:

foldl’ f 20 zsO = go z0 xs0
where
golz|] = 2
golz (x:xs) = go(f zx)uxs

QuickCheck says they’re the same...

FOLDL NOT STRICT ENOUGH?

39

But the strictness checker finds:

*x test 2 of Reducing lists (folds)

* * <function /= _|_>

* %

* [1]

That is:

Data.List.foldl’ (A - — 0) L [1]
= 0

While:

Data.List.Stream.foldl" (A - — 0) L [1]
- 1

The standard foldl’ is not as strict as it could be!

Strictness properties are hairy, and rarely specified.

failed:

FOLDL NOT STRICT ENOUGH?

40

RESULTS

RESULTS

41

TIME

| | | | |
(@] [To] o Yol o Lo o [To]

dnpaads abejuadiad

Bunios
9sIanal
eup-xabai
sawnd
shsioapad
Apoqu
loajow
joiqjapuew
apnosjonu-y
1abajul
sdeayqy
yonyuuey
ezl
TwyieidAIo
SluresIsuod
Aisne|o
wisa1I0
{ICERIY
lepuajed
1akoqg

Isue

Tuzx

A IS LN
ToAaIS|9ayM
[oowns
[enoads
181Ny

qi
AAISIN2aI
suaanb
subipid
swnsjenred
suiyjesed
aAaISu

dooj

es’|l
aelbaul
sdxaba’uab
8edxa
Zo-1o-subip
T8-10-subip
saallhreulq
llinouisq

d to build/foldr

ime compare

t

IN running

Percentage improvement

42

TIME

SPACE

r—T T 1T "7 "“"T 1
— -
- -
,]
I
— -
e
I -
C -
- -
= -
= -
-_ -
m -
—, -
| -
W]
- -
[-
- .
" —
I
] -
— .
- -
- -
_
[.
m -
I .
- -
I
7 -
I .
- -
— -
. -
_ -
_ -
. -
7 -
| | I
o N o .n o 1 o um o
S8 =S I R

suoIreso||e ul uononpas abejuaniad

ezl
9s9
sbsjyoapad
sawnd
yonyuuey
TwyeldAio
SJuIRNISUOD
Aisne|p
wisalI
{ICERIY]
Jepuajed
loajow
Bunios
asIanal
reup-xabal
Apoqu
10ig|opueW
apnosonu-y
Jabayul
sdeayqy
1akoq

Isue

151Ny

es'(

Tugx
ZoN3IS|aaym
ToAaIS|aayMm
qiu

sulyjered
sdxaba’'uab
8edxa
Ze-10-subip
dooj

suaanb
aelbaul
T8-10-subIp
linouisq
[0oWns
[enoads
BAISIND3I
subipid
swnspenJed
anaIsu
saankreulq

d to build/foldr

ions compare

llocat

ionin a

Percent reduct

43

SPACE

FUSION OPPORTUNITIES

o
™

| | | | | | | |
Ye] (@] [To] o o] o o o
N N i - ' A5

Sa1IS U0ISN} punoj ul Juawanoidw|

-15

ezI|e
9s9
sbsioapad
sawnd
yonyuuey
TwyreldAio
Sluressuod
Aisne|p
wisouI
HICERIY
Jepuajed
Joajow
Bunios
9s1anal
rup-xabal
Apoqu
10ig|opuew
apnosonu-y
Jabayul
sdeayqy
18hoq

woje

Isue

1s1'ny

es'l

TuZzx
Z9N3IS|2ayM
VELEINEETIN
qiu

suiyered
sdxaba’'uab
8edxa
Zo-jo-s)bip
dooj

suaanb
alelbaul
To-jo-s)bip
liinowiaq
|oowns
[enoads
subipid
swinsjenred
anaIsu
saanfreulq

New fusion opportunities found when compared to build/foldr

44

FUSION OPPORTUNITIES

 Improved optimisations: need all Step constructors removed
statically (the slow downs indicate which programs aren’t tidied

up properly)

» Fusing general recursive definitions via a translation to streams

« Fusing other algebraic data types, and back port full system to
Data.ByteString

FUTURE WORK 45

QUESTIONS!

L\

=» Home page :

http://www.cse.unsw.edu.au/~dons/streams.html

QUESTIONS!

46

