
Stream Fusion
From Lists to Streams to Nothing at All

Duncan Coutts Roman Leshchinskiy Don Stewart

Programming Tools Group Programming Languages and Systems

Oxford University University of New South Wales

1

LISTS IN HASKELL

List processing can be beautiful:

f :: Int → Int

f n = sum [k ∗m | k ← [1..n], m ← [1..k]]

Concise syntax for complex nested loops.

This is the code we want to write.

LISTS IN HASKELL 2

And this is the code we get...

f :: Int# → Int#

f n = sum 0 (

case 1 > n of

True → []

False →
let

go :: Int# → [Int]

go x = let

ds = case x == n of

True → []

False → go (x + 1)
in

case 1 > x of

True → ds

False → let

to y = I# (x ∗ y) : case y == x of

False → to (y + 1)

True → ds
in

to 1
in

go 1)

LISTS IN HASKELL 3

GENERATING BETTER CODE

Problem:
Ü Intermediate list is allocated, only to be immediately consumed!

Ü We need to combine the sum and list comprehension loops: fusion

Ü But some key functions, like foldl (or sum) are hard to fuse using
existing systems

We need fusion for zips, foldls and concatMaps/list
comprehensions.

GENERATING BETTER CODE 4

STREAM FUSION

Final code under stream fusion:

f ′ :: Int# → Int#

f ′ n = go 0 1

where

go s k = case k > n of

False → case 1 > k of

True → go s (k + 1)

False → to (s + k) k (k + 1) 2
True → s

to s k j m = case m > k of

False → to (s + (k ∗ m)) k j (m + 1)

True → go s j

No intermediate list. Better code. Faster code!

STREAM FUSION 5

INTRODUCTION TO FUSION

INTRODUCTION TO FUSION 6

THE BIG IDEA: DEFORESTATION AND FUSION

Ideally, pipelines on lists would just make one traversal

We’d write:

map f . map g

and the compiler would emit:

map (f . g)

No side-effects, so its ok!

We can teach GHC to do this with rewrite rules:

〈map/map fusion〉 ∀ f g .

map f ·map g 7→ map (f · g)

But how to fuse other combinations of list functions?

THE BIG IDEA: DEFORESTATION AND FUSION 7

THE BIG IDEA: DEFORESTATION AND FUSION

Ideally, pipelines on lists would just make one traversal

We’d write:

map f . map g

and the compiler would emit:

map (f . g)

No side-effects, so its ok!

We can teach GHC to do this with rewrite rules:

〈map/map fusion〉 ∀ f g .

map f ·map g 7→ map (f · g)

But how to fuse other combinations of list functions?

THE BIG IDEA: DEFORESTATION AND FUSION 7-A

THE BIG IDEA: DEFORESTATION AND FUSION

Ideally, pipelines on lists would just make one traversal

We’d write:

map f . map g

and the compiler would emit:

map (f . g)

No side-effects, so its ok!

We can teach GHC to do this with rewrite rules:

〈map/map fusion〉 ∀ f g .

map f ·map g 7→ map (f · g)

But how to fuse other combinations of list functions?

THE BIG IDEA: DEFORESTATION AND FUSION 7-B

FUSION SYSTEMS

A variety of general purpose fusion systems exist

In particular:

〈build/foldr fusion〉 ∀ g k z .

foldr k z (build g) 7→ g k z

(Gill, Launchbury, Peyton Jones ’93)

〈destroy/unfoldr fusion〉 ∀ g f e .

destroy g (unfoldr f e) 7→ g f e

(Svenningsson ’02)

Write your functions in terms of these functions and they will fuse.

FUSION SYSTEMS 8

FUSION SYSTEMS

A variety of general purpose fusion systems exist

In particular:

〈build/foldr fusion〉 ∀ g k z .

foldr k z (build g) 7→ g k z

(Gill, Launchbury, Peyton Jones ’93)

〈destroy/unfoldr fusion〉 ∀ g f e .

destroy g (unfoldr f e) 7→ g f e

(Svenningsson ’02)

Write your functions in terms of these functions and they will fuse.

FUSION SYSTEMS 8-A

LIMITATIONS

But some functions are hard to write using these functions.

The usual suspects:

• zip, zipWith and friends

• foldl and other left folds (length, sum, minimum)

• nested list functions (concatMap, list comprehensions)

And for some other functions that can fuse, we don’t get efficient
code (filter under destroy/unfoldr).

LIMITATIONS 9

STREAM FUSION

Three steps to better code:

1. Convert functions on recursive list structures into functions on
non-recursive co-structures (the Stream data type).

2. Eliminate conversions between structures and co-structures

3. Then use general purpose optimisations to fuse the
co-structure code

That’s all there is!

STREAM FUSION 10

STEP 1: THE STREAM CO-STRUCTURE

STEP 1: THE STREAM CO-STRUCTURE 11

STREAMS: UNFOLDED LISTS

We need an explicit representation of the unfolding of a list:

data Stream a = ∃s. Stream (s → Step a s) s
data Step a s = Done

| Yield a s
| Skip s

The internal state, s, of each stream is hidden.

Note the Stream constructor is a generalised unfoldr:

unfoldr :: ∀s a. (s → Maybe (a, s))→ s → [a]
Stream :: ∀s a. (s → Step a s) → s → Stream a

STREAMS: UNFOLDED LISTS 12

STREAMS: UNFOLDED LISTS

We need an explicit representation of the unfolding of a list:

data Stream a = ∃s. Stream (s → Step a s) s
data Step a s = Done

| Yield a s
| Skip s

The internal state, s, of each stream is hidden.

Note the Stream constructor is a generalised unfoldr:

unfoldr :: ∀s a. (s → Maybe (a, s))→ s → [a]
Stream :: ∀s a. (s → Step a s) → s → Stream a

STREAMS: UNFOLDED LISTS 12-A

FUNCTIONS ON STREAMS

An example:

maps :: (a → b)→ Stream a → Stream b
maps f (Stream next0 s0) = Stream next s0

where
next s = case next0 s of

Done → Done
Skip s ′ → Skip s ′

Yield x s ′ → Yield (f x) s ′

maps simply applies f to each yielded element.

The key trick is that next is always non-recursive

FUNCTIONS ON STREAMS 13

WRITING LIST FUNCTIONS

Assuming conversion to and from streams, we can write:

map :: (a → b)→ [a]→ [b]
map f = unstream · maps f · stream

Easy.

WRITING LIST FUNCTIONS 14

CONVERTION LISTS TO STREAMS

Build a stream by yielding each element of the original list:

stream :: [a]→ Stream a
stream xs0 = Stream next xs0

where
next [] = Done
next (x : xs) = Yield x xs

Non-recursive stepper function.

CONVERTION LISTS TO STREAMS 15

CONVERTING STREAMS BACK TO LISTS

unstream :: Stream a → [a]
unstream (Stream next s0) = unfold s0

where
unfold s = case next s of

Done → []
Skip s ′ → unfold s ′

Yield x s ′ → x : unfold s ′

Ü Unfold the stream by calling the stream’s next function

Ü Unlike unfoldr , streams can Skip.

Ü This ensures all steppers are non-recursive.

All recursion is lifted out of the pipeline: no more fixpoints!

CONVERTING STREAMS BACK TO LISTS 16

STEP 2: REMOVE REDUNDANT CONVERSIONS

STEP 2: REMOVE REDUNDANT CONVERSIONS 17

ONE STEP BACK...

Now, instead of consuming and producing a list once:
Ü We consume a list, with stream, allocating Step constructors

Ü Then transform the stream of Step values

Ü Then, finally, destroy the stream, allocating list nodes (unstream)

If we compose two functions:

map f · map g =
unstream · maps f · stream · unstream · maps g · stream

we can immediately see an opportunity to eliminate a conversion!

ONE STEP BACK... 18

ONE STEP BACK...

Now, instead of consuming and producing a list once:
Ü We consume a list, with stream, allocating Step constructors

Ü Then transform the stream of Step values

Ü Then, finally, destroy the stream, allocating list nodes (unstream)

If we compose two functions:

map f · map g =
unstream · maps f · stream · unstream · maps g · stream

we can immediately see an opportunity to eliminate a conversion!

ONE STEP BACK... 18-A

THE “FUSION” RULE

Assuming stream · unstream is the identity on streams, we obtain:

〈stream/unstream fusion〉
∀ s :: Stream a .

stream (unstream s) 7→ s

And now GHC knows about this too – thanks to rewrite rules.

THE “FUSION” RULE 19

ELIMINATING CONVERSIONS BY THE RULES

Give the stream fusion rule, we have:

unstream · maps f · stream · unstream · maps g · stream

{stream fusion} ⇒
unstream · maps f · maps g · stream

Ü The pipeline is now the composition of non-recursive stream functions

Ü Not recursive list functions!

Ü unstream runs the loop that results.

ELIMINATING CONVERSIONS BY THE RULES 20

ELIMINATING CONVERSIONS BY THE RULES

Give the stream fusion rule, we have:

unstream · maps f · stream · unstream · maps g · stream

{stream fusion} ⇒
unstream · maps f · maps g · stream

Ü The pipeline is now the composition of non-recursive stream functions

Ü Not recursive list functions!

Ü unstream runs the loop that results.

ELIMINATING CONVERSIONS BY THE RULES 20-A

STEP 3: COMBINING STREAM FUNCTIONS

STEP 3: COMBINING STREAM FUNCTIONS 21

FUSING CO-STRUCTURES

Now we need to fuse the stream co-structure functions, to
eliminate intermediate Step values.

But, because all stream steppers are non-recursive:

The compiler will eliminate the intermediate values on its own!

Needs:
Ü Inlining

Ü case-of-case

Ü constructor specialisation (new)

Ü Nested code needs a couple more optimisations (see the paper)

And that’s it!

FUSING CO-STRUCTURES 22

EXAMPLES

EXAMPLES 23

FUSIBLE FILTERS AND ENUMERATIONS

filter :: (a → Bool)→ Stream a → Stream a
filter p (Stream next0 s0) = Stream next s0

where
next s = case next0 s of

Done → Done
Skip s ′ → Skip s ′

Yield x s ′| p x → Yield x s ′

| otherwise → Skip s ′

Skip here means a non-recursive filter.

FUSIBLE FILTERS AND ENUMERATIONS 24

RIGHT FOLDS

foldr :: (a → b → b)→ b → Stream a → b
foldr f z (Stream next s0) = go s0

where
go s = case next s of

Done → z
Skip s ′ → go s ′

Yield x s ′ → f x (go s ′)

Folds consume streams, and are thus recursive.

RIGHT FOLDS 25

LEFT FOLDS

foldl :: (b → a → b)→ b → Stream a → b
foldl f z (Stream next s0) = go z s0

where
go z s = case next s of

Done → z
Skip s ′ → go z s ′

Yield x s ′ → go (f z x) s ′

Easy.

LEFT FOLDS 26

COMPLEX STREAM STATES: ZIPS

zip :: Stream a → Stream b → Stream (a, b)

zip (Stream nexta sa0) (Stream nextb sb0) = Stream next (sa0, sb0, Nothing)

where

next (sa, sb, Nothing) = case nexta sa of

Done → Done

Skip s′a → Skip (s′a , sb , Nothing)

Yield a s′a → Skip (s′a , sb , Just a)

next (s′a , sb , Just a) = case nextb sb of

Done → Done

Skip s′b → Skip (s′a , s′b , Just a)

Yield b s′b → Yield (a, b) (s′a , s′b , Nothing)

To zip two streams, we need a stepper that alternates between
each stream.
Ü Requires loop state kept in the stream (Just/Nothing)
Ü This compiles to a loop that builds Maybe values each time around
Ü Requires constructor specialisation to strip state away, generating

direct calls to worker functions instead

COMPLEX STREAM STATES: ZIPS 27

NESTED FUNCTIONS: CONCATMAP

concatMap :: (a → Stream b) → Stream a → Stream b

concatMap f (Stream nexta sa0) = Stream next (sa0, Nothing)

where

next (sa , Nothing) =

case nexta sa of

Done → Done

Skip s′a → Skip (s′a , Nothing)

Yield a s′a → Skip (s′a , Just (f a))

next (sa , Just (Stream nextb sb)) =

case nextb sb of

Done → Skip (sa , Nothing)

Skip s′b → Skip (sa , Just (Stream nextb s′b))
Yield b s′b → Yield b (sa , Just (Stream nextb s′b))

Fusible with on its input and output list:

concatMap f = unstream · concatMaps (stream · f) · stream

NESTED FUNCTIONS: CONCATMAP 28

COMPILING AND OPTIMISING STREAM CODE

COMPILING AND OPTIMISING STREAM CODE 29

COMPILING STREAMS CODE

Let’s compile this sum of squares code:

sum [m ∗m |m ← [1..n]]

Desugars to:

foldls (+) 0 (concatMaps (λm. returns (m ∗m))
(enumFromTos 1 n))

Using the streams desugaring of comprehensions (see paper).

COMPILING STREAMS CODE 30

COMPILING STREAMS CODE

Let’s compile this sum of squares code:

sum [m ∗m |m ← [1..n]]

Desugars to:

foldls (+) 0 (concatMaps (λm. returns (m ∗m))
(enumFromTos 1 n))

Using the streams desugaring of comprehensions (see paper).

COMPILING STREAMS CODE 30-A

Inline stream function:

let

nextenum i | i > n = Done

| otherwise = Yield i (i + 1)

nextcm (i, Nothing) =

case nextenum i of

Done → Done

Yield x i′ → let

nextret True = Yield (x ∗ x) False

nextret False = Done
in

Skip (i′, Just (Stream nextret True))

nextcm (i, Just (Stream next s)) =

case next s of

Done → Skip (i, Nothing)

Yield y s′ → Yield y (i, Just (Stream next s′))

go z s = case nextcm s of

Done → z

Skip s′ → go z s′

Yield xs′ → go (z + x) s′

in

go 0 (1, Nothing)

COMPILING STREAMS CODE 31

APPLY CASE-OF-CASE

go z (i, Nothing) | i > n = z

| otherwise =
let

nextret True = Yield (i ∗ i) False

nextret False = Done
in

go z (i + 1, Just (Stream nextret True))

go z (i, Just (Stream next s)) =

case next s of

Done → go z (i, Nothing)

Skip s′ → go z (i, Just (Stream next s′))
Yield x s′ → go (z + x)(i, Just (Stream next s′))

APPLY CASE-OF-CASE 32

APPLY CONSTRUCTOR SPECIALISATION

Using:

∀ z i . go z (i , Nothing) = go1 z i
∀ z i next s.go z (i , Just (Stream next s)) = go2 z i next s

We get:

go1 z i | i > n = z

| otherwise =
let

nextret True = Yield (i ∗ i) False

nextret False = Done
in

go2 z (i + 1) nextret True

go2 z i next s = case next s of

Done → go1 z i

Skip s′ → go2 z i next s′

Yield x s′ → go2 (z + x) i next s′

APPLY CONSTRUCTOR SPECIALISATION 33

APPLY STATIC ARGUMENT TRANSFORMATION

go1 z i | i > n = z
| otherwise =

let
go′2 z True = go′2 (z + i ∗ i) False
go′2 z False = go1 z (i + 1)

in
go′2 z True

Getting there...

APPLY STATIC ARGUMENT TRANSFORMATION 34

AND CLEANUP

go1 z i | i > n = z
| otherwise = go1 (z + i ∗ i) (i + 1)

Phew! The original nested loop becomes a fast, flat loop.

Needs those four key optimisations, and in particular, SpecConstr.

AND CLEANUP 35

AUTOMATED TESTING

AUTOMATED TESTING 36

STRICTNESS TESTING WITH QUICKCHECK

Needed to test for equivalence to a number of models:
Ü Data.Stream == H’98

Ü Data.Stream == Data.List

Ü Data.Stream.List == H’98

Ü Data.Stream.List == Data.List

Perfect use case for QuickCheck!

913 QC properties later, feeling more confident that the code is
sane.

STRICTNESS TESTING WITH QUICKCHECK 37

BUT WE NEED TO BE CAREFUL ABOUT ⊥
A port of SmallCheck, to insert ⊥ into lists.
Ü Breadth first search of the test case space

Ü Test for correctness in the presence of ⊥ for all lists up to depth n

Ü Inserting and catching ⊥ in random lists

Caught a lot of strictness differences wrt. to the models, none
found by usual QuickCheck!

And bugs (?) in Data.List...

BUT WE NEED TO BE CAREFUL ABOUT ⊥ 38

FOLDL’ NOT STRICT ENOUGH?

foldl’ from Data.List

foldl ′ :: (a → b → a) → a → [b] → a
foldl ′ f a [] = a
foldl ′ f a (x : xs) = let a ′ = f a x in a ′ ‘seq ‘ foldl ′ f a ′ xs

And our version:

foldl ′ f z0 xs0 = go z0 xs0
where

go !z [] = z
go !z (x : xs) = go (f z x) xs

QuickCheck says they’re the same...

FOLDL’ NOT STRICT ENOUGH? 39

But the strictness checker finds:

** test 2 of Reducing lists (folds) failed:

** <function /= _|_>

** _|_

** [_|_]

That is:

Data.List .foldl ′ (λ → 0) ⊥ [1]
⇒ 0

While:

Data.List .Stream.foldl ′ (λ → 0) ⊥ [1]
⇒⊥

The standard foldl’ is not as strict as it could be!

Strictness properties are hairy, and rarely specified.

FOLDL’ NOT STRICT ENOUGH? 40

RESULTS

RESULTS 41

TIME

-20

-15

-10

-5

 0

 5

 10

 15

 20

be
rn

ou
ill

i
bi

na
ry

tr
ee

s
di

gi
ts

-o
f-

e1
di

gi
ts

-o
f-

e2
ex

p3
8

ge
n r

eg
ex

ps
in

te
gr

at
e

jl r
sa

lo
op

ns
ie

ve
pa

ra
ffi

ns
pa

rt
ia

ls
um

s
pi

di
gi

ts
qu

ee
ns

re
cu

rs
iv

e
rf

ib
ru

lis
t

sp
ec

tr
al

su
m

co
l

w
he

el
si

ev
e1

w
he

el
si

ev
e2

x2
n1

an
si

bo
ye

r
ca

le
nd

ar
ci

ch
el

li
ci

rc
si

m
cl

au
si

fy
co

ns
tr

ai
nt

s
cr

yp
ta

rit
hm

1
el

iz
a

fa
nn

ku
ch

fib
he

ap
s

in
te

ge
r

k-
nu

cl
eo

tid
e

m
an

de
lb

ro
t

m
et

eo
r

nb
od

y
pe

rf
ec

ts
qs

pr
im

es
re

ge
x-

dn
a

re
ve

rs
e

so
rt

in
g

P
er

ce
nt

ag
e

sp
ee

du
p

Percentage improvement in running time compared to build/foldr

TIME 42

SPACE

-20

-15

-10

-5

 0

 5

 10

 15

 20

bi
na

ry
tr

ee
s

ns
ie

ve
pa

rt
ia

ls
um

s
pi

di
gi

ts
re

cu
rs

iv
e

sp
ec

tr
al

su
m

co
l

be
rn

ou
ill

i
di

gi
ts

-o
f-

e1
in

te
gr

at
e

qu
ee

ns
lo

op
di

gi
ts

-o
f-

e2
ex

p3
8

ge
n r

eg
ex

ps
pa

ra
ffi

ns rf
ib

w
he

el
si

ev
e1

w
he

el
si

ev
e2

x2
n1

jl r
sa

ru
lis

t
an

si
bo

ye
r

fib
he

ap
s

in
te

ge
r

k-
nu

cl
eo

tid
e

m
an

de
lb

ro
t

nb
od

y
re

ge
x-

dn
a

re
ve

rs
e

so
rt

in
g

m
et

eo
r

ca
le

nd
ar

ci
ch

el
li

ci
rc

si
m

cl
au

si
fy

co
ns

tr
ai

nt
s

cr
yp

ta
rit

hm
1

fa
nn

ku
ch

pr
im

es
pe

rf
ec

ts
qs cs
e

el
iz

a

P
er

ce
nt

ag
e

re
du

ct
io

n
in

 a
llo

ca
tio

ns

Percent reduction in allocations compared to build/foldr

SPACE 43

FUSION OPPORTUNITIES

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

bi
na

ry
tr

ee
s

ns
ie

ve
pa

rt
ia

ls
um

s
pi

di
gi

ts
sp

ec
tr

al
su

m
co

l
be

rn
ou

ill
i

di
gi

ts
-o

f-
e1

in
te

gr
at

e
qu

ee
ns

lo
op

di
gi

ts
-o

f-
e2

ex
p3

8
ge

n r
eg

ex
ps

pa
ra

ffi
ns rf
ib

w
he

el
si

ev
e1

w
he

el
si

ev
e2

x2
n1

jl r
sa

ru
lis

t
an

si
at

om
bo

ye
r

fib
he

ap
s

in
te

ge
r

k-
nu

cl
eo

tid
e

m
an

de
lb

ro
t

nb
od

y
re

ge
x-

dn
a

re
ve

rs
e

so
rt

in
g

m
et

eo
r

ca
le

nd
ar

ci
ch

el
li

ci
rc

si
m

cl
au

si
fy

co
ns

tr
ai

nt
s

cr
yp

ta
rit

hm
1

fa
nn

ku
ch

pr
im

es
pe

rf
ec

ts
qs cs
e

el
iz

a

Im
pr

ov
em

en
t i

n
fo

un
d

fu
si

on
 s

ite
s

New fusion opportunities found when compared to build/foldr

FUSION OPPORTUNITIES 44

FUTURE WORK

• Improved optimisations: need all Step constructors removed
statically (the slow downs indicate which programs aren’t tidied
up properly)

• Fusing general recursive definitions via a translation to streams

• Fusing other algebraic data types, and back port full system to
Data.ByteString

FUTURE WORK 45

QUESTIONS!

Ü Home page :
http://www.cse.unsw.edu.au/∼dons/streams.html

QUESTIONS! 46

