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The Free LLunch Is Over

Uniprocessor hits the physical limit
o Multicore, many core systems

Programming challenges now

o Multiple flows of control and memories
o Finding algorithm that can run in parallel
o Correctness of the program

o Synchronization Issues

o Debugging the program



Stream Programming Paradigm

Input channels

It expresses parallelism inherently \\._4_/

It leverages program structure to Filter

discover parallelism and delivers ~// \
high performance // \

It is structured around notion of a
“stream”

A streaming computation represents
o A sequence of transformations on the
data streams

o A stream program is the composition of
filters into a stream graph

Output channels



StreamIt Language
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A Simple Filter in Streamlt

int->int filter A {
init {
/[ empty

h
work pop 1 peek 2 push 1 {

push(peek(0) + peek(1));
pop();




StreamlIt Example

float->float pipeline Example() {
add A();

add B();
add splitjoin {
split duplicate;
add D();
add E();
join roundrobin;

}
add G();
add H()




Research Question?

How to parallelize the stream
program

o Optimize throughput
Synchronous model

o Describes bandwidths of
streams In steady state

Bottleneck actor
o An actor constrains “Z”
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Static Translation of Stream Programs

We propose

o A simple quantitative analysis to resolve
bottlenecks in stream programs

o Actors mapping technique to a parallel system
o Scheduling of mapped actors in each processor
Our goal

o To statically optimize the throughput of a stream
program



Finding Closed Form

We assume bandwidth
functions are “linear functions”

We have a system of
simultaneous linear equations

The output are shown as
weights

We express output of each
actor as a function of “z”
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‘ Mapping Actors to Processors

= An NP-hard problem
o Takes too long time
= Approximation algorithm 5
o Much faster O(n log n) split
o Non-optimal solution 0.5 0.5

= We formulate Integer Linear
Programming problem considering

o Input, output and processing 1.0 1.0
bandwidths of each actor join

o Processing capacity each processor -
o Inter processor communication
bandwidths
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Mapping Actors to Processors Condt.

We develop a test for a

(]

given "z |

We find a mapping n}d Z/

using “Binary Search” | 1
OI

Solution space
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Resolve Bottleneck

We find bottleneck by
quantitative analysis

o Actors constraining the
system bandwidth

Duplicate hot actors

Then we run the whole
process again

Reason of considering
bottleneck after mapping
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‘ Actor Scheduling for Processors

Actor A

Schedule of processor P+
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Entire Framework

Finding a Closed Form

l

Find Mapping by ILP/Approx.

l

Resolve Bottleneck

l

Schedule Actors for Processors
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Execution Time of 1LLP Solver
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Execution Time of a Variation of Bin-packing Algorithm
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Optimal vs. Approximation
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Summary

We develop a synchronous model for stream
programs

Statically optimize the throughput of stream
programs

Resolving bottleneck by simple quantitative
analysis

Finding an approximation for the mapping
problem
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