Static Translation of Stream
Program to a Parallel System

S. M. Farhad
The University of Sydney

The Free LLunch Is Over

Uniprocessor hits the physical limit
o Multicore, many core systems

Programming challenges now

o Multiple flows of control and memories
o Finding algorithm that can run in parallel
o Correctness of the program

o Synchronization Issues

o Debugging the program

Stream Programming Paradigm

Input channels

It expresses parallelism inherently \\._4_/

It leverages program structure to Filter

discover parallelism and delivers ~// \
high performance // \

It is structured around notion of a
“stream”

A streaming computation represents
o A sequence of transformations on the
data streams

o A stream program is the composition of
filters into a stream graph

Output channels

StreamIt Language

filter — |,

pipeline

| | 3 maybe
= An implementation m@ O ey
of stream

language construct

rogrammin splitjoin R
= |t exposes
parallelism —{ splitter oiner H»
= It is architecture _ { y
iIndependent feedback loop
4 N
= Modular “—ioiner]—>D—+[splitter |

. D‘—)

4

A Simple Filter in Streamlt

int->int filter A {
init {
/[empty

h
work pop 1 peek 2 push 1 {

push(peek(0) + peek(1));
pop();

StreamlIt Example

float->float pipeline Example() {
add A();

add B();
add splitjoin {
split duplicate;
add D();
add E();
join roundrobin;

}
add G();
add H()

Research Question?

How to parallelize the stream
program

o Optimize throughput
Synchronous model

o Describes bandwidths of
streams In steady state

Bottleneck actor
o An actor constrains “Z”

A
1
B
4
split
1 1
D E
\/
join
y 1
G

Static Translation of Stream Programs

We propose

o A simple quantitative analysis to resolve
bottlenecks in stream programs

o Actors mapping technique to a parallel system
o Scheduling of mapped actors in each processor
Our goal

o To statically optimize the throughput of a stream
program

Finding Closed Form

We assume bandwidth
functions are “linear functions”

We have a system of
simultaneous linear equations

The output are shown as
weights

We express output of each
actor as a function of “z”

0.5 0.5

‘ Mapping Actors to Processors

= An NP-hard problem
o Takes too long time
= Approximation algorithm 5
o Much faster O(n log n) split
o Non-optimal solution 0.5 0.5

= We formulate Integer Linear
Programming problem considering

o Input, output and processing 1.0 1.0
bandwidths of each actor join

o Processing capacity each processor -
o Inter processor communication
bandwidths

10

P2

Mapping Actors to Processors Condt.

We develop a test for a

(]

given "z |

We find a mapping n}d Z/

using “Binary Search” | 1
OI

Solution space

11

Resolve Bottleneck

We find bottleneck by
quantitative analysis

o Actors constraining the
system bandwidth

Duplicate hot actors

Then we run the whole
process again

Reason of considering
bottleneck after mapping

12

‘ Actor Scheduling for Processors

Actor A

Schedule of processor P+

13

Entire Framework

Finding a Closed Form

l

Find Mapping by ILP/Approx.

l

Resolve Bottleneck

l

Schedule Actors for Processors

14

Execution Time of 1LLP Solver

A T Py m— l l l l
600 E m?:‘e, vl HE TV
503‘5@0 rmoatmm=<Model >
g *° Symm. Run ---%--»""" -
= 300 |- oy -
= .
= 200 S K -
8 100 |- 0 e PN - - b 3
7)) o 2 2 .ue . —— — . ——_— ——_—— :'
- o 2 40 60 80 100 120 140 160 180 200 '
- — 300 Number of nodes "
= %
= K=K

O 20 40 60 80 100 120 140 160 -
Number of nodes

15

Execution Time of a Variation of Bin-packing Algorithm

V.cO I I I I I I I I

Time vs Number of nodes,
0.28 B2 T T T T T T T

0.27.

0.26 0-26
O 0.25 A 25

- 0.24

‘&) -

& 023§ 24
=S 0.22
021.P.23
0.2

0.19 > 1 1 1 1 1 1 1
0 20 0 60 80 100 120 140 160 180
0.21

Number of nodes,
0.2

0.19
O 20 40 60 80 100 120 140 160

Number of nhodes

Time

16

Optimal vs. Approximation

1 I 1 I 1 1 1 1
z_o;rta%@binﬁ.ﬁﬂ_[ns 20,p=3]
5F 1 I I I I I T T T =
ratjo, ——
4|4
Cap
O
£l -
©
c
g@Z i -
(O]
e
D1 -
(&
| - .
(¢b) 0 1 1 1 1 1 1 1 1 1
ol 5] 100 15 20, 25 30, 35 40 45 5Q
1 Benchmar!

5 10 15 20 25 30 35
Benchmark

40

17

Summary

We develop a synchronous model for stream
programs

Statically optimize the throughput of stream
programs

Resolving bottleneck by simple quantitative
analysis

Finding an approximation for the mapping
problem

18

Related Works

Static Scheduling of SDF Programs for DSP [Lee ‘87]

Streamlt: A language for streaming applications [Thies ‘02]

Phased Scheduling of Stream Programs [Thies '03]

Exploiting Coarse Grained Task, Data, and Pipeline Parallelism in

Stream Programs [Thies ‘06]

[5] Orchestrating the Execution of Stream Programs on Cell [Scott "08]

[6] Software Pipelined Execution of Stream Programs on GPUs
[Udupa'09]

[7] Synergistic Execution of Stream Programs on Multicores with

Accelerators [Udupa ‘09]

BN =

19

