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The Free Lunch Is Over 

  Uniprocessor hits the physical limit 
  Multicore, many core systems 

  Programming challenges now 
  Multiple flows of control and memories 
  Finding algorithm that can run in parallel 
  Correctness of the program 
  Synchronization Issues 
  Debugging the program 
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Stream Programming Paradigm 

  It expresses parallelism inherently 
  It leverages program structure to 

discover parallelism and delivers 
high performance 

  It is structured around notion of a 
“stream” 

  A streaming computation represents  
  A sequence of transformations on the 

data streams 
  A stream program is the composition of 

filters into a stream graph 
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Input channels 

Output channels 



4 

StreamIt Language 

  An implementation 
of stream 
programming 

  It exposes 
parallelism 

  It is architecture 
independent 

  Modular 

parallel computation 

 may be 
any StreamIt 
language construct 
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A Simple Filter in StreamIt 

int->int filter A { 
 init { 
  // empty 
 } 
 work pop 1 peek 2 push 1 { 
  push(peek(0) + peek(1)); 
  pop(); 
 } 

} 

A 



StreamIt Example 

float->float pipeline Example() { 
 add A(); 
 add B(); 
 add splitjoin { 
  split duplicate; 
  add D(); 
  add E(); 
  join roundrobin; 
 } 
 add G(); 
 add H(); 

} 
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Research Question? 

  How to parallelize the stream 
program 
  Optimize throughput 

  Synchronous model 
  Describes bandwidths of 

streams in steady state 
  Bottleneck actor 

  An actor constrains “z” 

7 

G 

H 

A 

B 

D 

split 

join 

E 

z 

1 

1 1 

1 

1 1 

1 

1 



8 8 

Static Translation of Stream Programs 

  We propose 
  A simple quantitative analysis to resolve 

bottlenecks in stream programs 
  Actors mapping technique to a parallel system 
  Scheduling of mapped actors in each processor 

  Our goal 
  To statically optimize the throughput of a stream 

program 



Finding Closed Form 

  We assume bandwidth 
functions are “linear functions” 

  We have a system of 
simultaneous linear equations 

  The output are shown as 
weights 

  We express output of each 
actor as a function of “z” 
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Mapping Actors to Processors 

  An NP-hard problem 
  Takes too long time 

  Approximation algorithm 
  Much faster O(n log n) 
  Non-optimal solution 

  We formulate Integer Linear 
Programming problem considering 
  Input, output and processing 

bandwidths of each actor 
  Processing capacity each processor 
  Inter processor communication 

bandwidths 
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Mapping Actors to Processors Condt. 

  We develop a test for a 
given “z”  

  We find a mapping 
using “Binary Search” 
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Resolve Bottleneck 

  We find bottleneck by 
quantitative analysis 
  Actors constraining the 

system bandwidth 
  Duplicate hot actors 
  Then we run the whole 

process again 
  Reason of considering 

bottleneck after mapping 
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Actor Scheduling for Processors 
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Entire Framework 

Finding a Closed Form 

Resolve Bottleneck 

Find Mapping by ILP/Approx. 

Schedule Actors for Processors 
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Execution Time of ILP Solver 
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Execution Time of a Variation of Bin-packing Algorithm 
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Optimal vs. Approximation 
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Summary 

  We develop a synchronous model for stream 
programs 

  Statically optimize the throughput of stream 
programs 

  Resolving bottleneck by simple quantitative 
analysis 

  Finding an approximation for the mapping 
problem 
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