
Static Translation of Stream
Program to a Parallel System

S. M. Farhad
The University of Sydney

2

The Free Lunch Is Over

  Uniprocessor hits the physical limit
  Multicore, many core systems

  Programming challenges now
  Multiple flows of control and memories
  Finding algorithm that can run in parallel
  Correctness of the program
  Synchronization Issues
  Debugging the program

2

3

Stream Programming Paradigm

  It expresses parallelism inherently
  It leverages program structure to

discover parallelism and delivers
high performance

  It is structured around notion of a
“stream”

  A streaming computation represents
  A sequence of transformations on the

data streams
  A stream program is the composition of

filters into a stream graph

Filter

Input channels

Output channels

4

StreamIt Language

  An implementation
of stream
programming

  It exposes
parallelism

  It is architecture
independent

  Modular

parallel computation

 may be
any StreamIt
language construct

joiner splitter

pipeline

feedback loop

joiner splitter

splitjoin

filter

5

A Simple Filter in StreamIt

int->int filter A {
 init {
 // empty
 }
 work pop 1 peek 2 push 1 {
 push(peek(0) + peek(1));
 pop();
 }

}

A

StreamIt Example

float->float pipeline Example() {
 add A();
 add B();
 add splitjoin {
 split duplicate;
 add D();
 add E();
 join roundrobin;
 }
 add G();
 add H();

}

6

G

H

A

B

D

split

join

E

z

Research Question?

  How to parallelize the stream
program
  Optimize throughput

  Synchronous model
  Describes bandwidths of

streams in steady state
  Bottleneck actor

  An actor constrains “z”

7

G

H

A

B

D

split

join

E

z

1

1 1

1

1 1

1

1

8 8

Static Translation of Stream Programs

  We propose
  A simple quantitative analysis to resolve

bottlenecks in stream programs
  Actors mapping technique to a parallel system
  Scheduling of mapped actors in each processor

  Our goal
  To statically optimize the throughput of a stream

program

Finding Closed Form

  We assume bandwidth
functions are “linear functions”

  We have a system of
simultaneous linear equations

  The output are shown as
weights

  We express output of each
actor as a function of “z”

9

G

H

A

B

D

split

join

E

z

1.0

0.5 0.5

1.0

1.0 1.0

1.0

1.0

10

Mapping Actors to Processors

  An NP-hard problem
  Takes too long time

  Approximation algorithm
  Much faster O(n log n)
  Non-optimal solution

  We formulate Integer Linear
Programming problem considering
  Input, output and processing

bandwidths of each actor
  Processing capacity each processor
  Inter processor communication

bandwidths

P1

P2

P3 G

H

A

B

D

split

join

E

z

1.0

0.5 0.5

1.0

1.0 1.0

1.0

1.0

11

Mapping Actors to Processors Condt.

  We develop a test for a
given “z”

  We find a mapping
using “Binary Search”

0

zqiven

1

Solution space

mid

Resolve Bottleneck

  We find bottleneck by
quantitative analysis
  Actors constraining the

system bandwidth
  Duplicate hot actors
  Then we run the whole

process again
  Reason of considering

bottleneck after mapping

12

0

zsys

1

< bwactor

Actor Scheduling for Processors

13

t

Actor A

Actor B

Schedule of processor P1

14 14

Entire Framework

Finding a Closed Form

Resolve Bottleneck

Find Mapping by ILP/Approx.

Schedule Actors for Processors

15

Execution Time of ILP Solver

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140 160 180 200

Ti
m

e
in

se
c

Number of nodes

Processor, P = 3

Simple Model
Comm. Model

Symm. Run

Execution Time of a Variation of Bin-packing Algorithm

16

 0.19
 0.2

 0.21
 0.22
 0.23
 0.24
 0.25
 0.26
 0.27
 0.28

 0 20 40 60 80 100 120 140 160 180 200

Ti
m

e
in

Se
c

Number of nodes

Time vs Number of nodes

17 17

Optimal vs. Approximation

 0

 1

 2

 3

 4

 5

 5 10 15 20 25 30 35 40 45 50

Pe
rc

en
ta

ge
 (%

)

Benchmark

z_opt vs z_bin K = 50 [n = 20, p = 3]

ratio

Summary

  We develop a synchronous model for stream
programs

  Statically optimize the throughput of stream
programs

  Resolving bottleneck by simple quantitative
analysis

  Finding an approximation for the mapping
problem

18

Related Works

[1] Static Scheduling of SDF Programs for DSP [Lee ‘87]
[2] StreamIt: A language for streaming applications [Thies ‘02]
[3] Phased Scheduling of Stream Programs [Thies ’03]
[4] Exploiting Coarse Grained Task, Data, and Pipeline Parallelism in
 Stream Programs [Thies ‘06]
[5] Orchestrating the Execution of Stream Programs on Cell [Scott ’08]
[6] Software Pipelined Execution of Stream Programs on GPUs
 [Udupa‘09]
[7] Synergistic Execution of Stream Programs on Multicores with
 Accelerators [Udupa ‘09]

19

