
Static Translation of Stream
Program to a Parallel System

S. M. Farhad
The University of Sydney

2

The Free Lunch Is Over

  Uniprocessor hits the physical limit
  Multicore, many core systems

  Programming challenges now
  Multiple flows of control and memories
  Finding algorithm that can run in parallel
  Correctness of the program
  Synchronization Issues
  Debugging the program

2

3

Stream Programming Paradigm

  It expresses parallelism inherently
  It leverages program structure to

discover parallelism and delivers
high performance

  It is structured around notion of a
“stream”

  A streaming computation represents
  A sequence of transformations on the

data streams
  A stream program is the composition of

filters into a stream graph

Filter

Input channels

Output channels

4

StreamIt Language

  An implementation
of stream
programming

  It exposes
parallelism

  It is architecture
independent

  Modular

parallel computation

 may be
any StreamIt
language construct

joiner splitter

pipeline

feedback loop

joiner splitter

splitjoin

filter

5

A Simple Filter in StreamIt

int->int filter A {
 init {
 // empty
 }
 work pop 1 peek 2 push 1 {
 push(peek(0) + peek(1));
 pop();
 }

}

A

StreamIt Example

float->float pipeline Example() {
 add A();
 add B();
 add splitjoin {
 split duplicate;
 add D();
 add E();
 join roundrobin;
 }
 add G();
 add H();

}

6

G

H

A

B

D

split

join

E

z

Research Question?

  How to parallelize the stream
program
  Optimize throughput

  Synchronous model
  Describes bandwidths of

streams in steady state
  Bottleneck actor

  An actor constrains “z”

7

G

H

A

B

D

split

join

E

z

1

1 1

1

1 1

1

1

8 8

Static Translation of Stream Programs

  We propose
  A simple quantitative analysis to resolve

bottlenecks in stream programs
  Actors mapping technique to a parallel system
  Scheduling of mapped actors in each processor

  Our goal
  To statically optimize the throughput of a stream

program

Finding Closed Form

  We assume bandwidth
functions are “linear functions”

  We have a system of
simultaneous linear equations

  The output are shown as
weights

  We express output of each
actor as a function of “z”

9

G

H

A

B

D

split

join

E

z

1.0

0.5 0.5

1.0

1.0 1.0

1.0

1.0

10

Mapping Actors to Processors

  An NP-hard problem
  Takes too long time

  Approximation algorithm
  Much faster O(n log n)
  Non-optimal solution

  We formulate Integer Linear
Programming problem considering
  Input, output and processing

bandwidths of each actor
  Processing capacity each processor
  Inter processor communication

bandwidths

P1

P2

P3 G

H

A

B

D

split

join

E

z

1.0

0.5 0.5

1.0

1.0 1.0

1.0

1.0

11

Mapping Actors to Processors Condt.

  We develop a test for a
given “z”

  We find a mapping
using “Binary Search”

0

zqiven

1

Solution space

mid

Resolve Bottleneck

  We find bottleneck by
quantitative analysis
  Actors constraining the

system bandwidth
  Duplicate hot actors
  Then we run the whole

process again
  Reason of considering

bottleneck after mapping

12

0

zsys

1

< bwactor

Actor Scheduling for Processors

13

t

Actor A

Actor B

Schedule of processor P1

14 14

Entire Framework

Finding a Closed Form

Resolve Bottleneck

Find Mapping by ILP/Approx.

Schedule Actors for Processors

15

Execution Time of ILP Solver

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140 160 180 200

Ti
m

e
in

se
c

Number of nodes

Processor, P = 3

Simple Model
Comm. Model

Symm. Run

Execution Time of a Variation of Bin-packing Algorithm

16

 0.19
 0.2

 0.21
 0.22
 0.23
 0.24
 0.25
 0.26
 0.27
 0.28

 0 20 40 60 80 100 120 140 160 180 200

Ti
m

e
in

Se
c

Number of nodes

Time vs Number of nodes

17 17

Optimal vs. Approximation

 0

 1

 2

 3

 4

 5

 5 10 15 20 25 30 35 40 45 50

Pe
rc

en
ta

ge
 (%

)

Benchmark

z_opt vs z_bin K = 50 [n = 20, p = 3]

ratio

Summary

  We develop a synchronous model for stream
programs

  Statically optimize the throughput of stream
programs

  Resolving bottleneck by simple quantitative
analysis

  Finding an approximation for the mapping
problem

18

Related Works

[1] Static Scheduling of SDF Programs for DSP [Lee ‘87]
[2] StreamIt: A language for streaming applications [Thies ‘02]
[3] Phased Scheduling of Stream Programs [Thies ’03]
[4] Exploiting Coarse Grained Task, Data, and Pipeline Parallelism in
 Stream Programs [Thies ‘06]
[5] Orchestrating the Execution of Stream Programs on Cell [Scott ’08]
[6] Software Pipelined Execution of Stream Programs on GPUs
 [Udupa‘09]
[7] Synergistic Execution of Stream Programs on Multicores with
 Accelerators [Udupa ‘09]

19

