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The Free Lunch Is Over 

  Uniprocessor hits the physical limit 
  Multicore, many core systems 

  Programming challenges now 
  Multiple flows of control and memories 
  Finding algorithm that can run in parallel 
  Correctness of the program 
  Synchronization Issues 
  Debugging the program 
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Stream Programming Paradigm 

  It expresses parallelism inherently 
  It leverages program structure to 

discover parallelism and delivers 
high performance 

  It is structured around notion of a 
“stream” 

  A streaming computation represents  
  A sequence of transformations on the 

data streams 
  A stream program is the composition of 

filters into a stream graph 
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StreamIt Language 

  An implementation 
of stream 
programming 

  It exposes 
parallelism 

  It is architecture 
independent 

  Modular 

parallel computation 
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A Simple Filter in StreamIt 

int->int filter A { 
 init { 
  // empty 
 } 
 work pop 1 peek 2 push 1 { 
  push(peek(0) + peek(1)); 
  pop(); 
 } 

} 

A 



StreamIt Example 

float->float pipeline Example() { 
 add A(); 
 add B(); 
 add splitjoin { 
  split duplicate; 
  add D(); 
  add E(); 
  join roundrobin; 
 } 
 add G(); 
 add H(); 

} 
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Research Question? 

  How to parallelize the stream 
program 
  Optimize throughput 

  Synchronous model 
  Describes bandwidths of 

streams in steady state 
  Bottleneck actor 

  An actor constrains “z” 
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Static Translation of Stream Programs 

  We propose 
  A simple quantitative analysis to resolve 

bottlenecks in stream programs 
  Actors mapping technique to a parallel system 
  Scheduling of mapped actors in each processor 

  Our goal 
  To statically optimize the throughput of a stream 

program 



Finding Closed Form 

  We assume bandwidth 
functions are “linear functions” 

  We have a system of 
simultaneous linear equations 

  The output are shown as 
weights 

  We express output of each 
actor as a function of “z” 
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Mapping Actors to Processors 

  An NP-hard problem 
  Takes too long time 

  Approximation algorithm 
  Much faster O(n log n) 
  Non-optimal solution 

  We formulate Integer Linear 
Programming problem considering 
  Input, output and processing 

bandwidths of each actor 
  Processing capacity each processor 
  Inter processor communication 

bandwidths 
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Mapping Actors to Processors Condt. 

  We develop a test for a 
given “z”  

  We find a mapping 
using “Binary Search” 
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Resolve Bottleneck 

  We find bottleneck by 
quantitative analysis 
  Actors constraining the 

system bandwidth 
  Duplicate hot actors 
  Then we run the whole 

process again 
  Reason of considering 

bottleneck after mapping 

12 

0 

zsys 

1 

< bwactor 



Actor Scheduling for Processors 
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Entire Framework 

Finding a Closed Form 

Resolve Bottleneck 

Find Mapping by ILP/Approx. 

Schedule Actors for Processors 
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Execution Time of ILP Solver 
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Execution Time of a Variation of Bin-packing Algorithm 
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Optimal vs. Approximation 
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Summary 

  We develop a synchronous model for stream 
programs 

  Statically optimize the throughput of stream 
programs 

  Resolving bottleneck by simple quantitative 
analysis 

  Finding an approximation for the mapping 
problem 
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