Symbolic Analysis for
Buffer Overflow

Surinder Jain
The University of Sydney

4th SAPLING meeting
Sydney, Australia

Buffer Overflow
e Update/Read beyond bounds of buffer

® Results in
Erratic program behaviour
Program crashes
Security breaches

* Caused by

Array access outside array limits

Pointer reference errors

Array indicies errors

Array dCCesSS errors

i=0 * Variable array index
* Modified in a loop

array a[b-1]

while c < b and i>m and i<n
i=i+1
j=j+b
d=2*d

c=c+1
a[c]=0 -Buffer overflow during (b-c)t" i.e

i€ o last iteration of the loop.

f=f+2
else
e=g*e

Static Program Analysis

* Analyse Program behaviour
e Without running the program

Techniques

® Data flow analysis

® Constraint based analysis
® Abstract Interpretation

* Model checking

® Symbolic Analysis

Symbolic Analysis & Execution

* Enumerate program paths

e Symbolic execution of each program path

* Execute a program with symbolic values

e Symbolic domains, predicates, semantics

* Relate symbolic results to concrete interpretation

Array bounds violation Analysis

* Enumerate program paths in a loop

* For each program path, do
e Symbolic execution

e Compare array indices with array bounds

Example

i=0
array a[b-1]
while c < b and i>m and i<n
i=i+1
j=j+b
d=2*d
c=c+1
a[c]=0 /* buffer overflow */
if e>0
f=f+2
else
e=g*e

Number of Loop iterations

= min(b-c_,m-n-2)

Value of ¢ during i’th iteration (closed
form of ¢) at line a[c]|=0 is

C; = C +1
Value of c in final iteration is
c=c,+(b-c,)
=b
Hence statement a[c]=0
when c=b causes buffer overflow

in program path where m-n-2>=b-c,

¢, is value of c at the start of the program

Problem in General
e Undecidable

* Enumerate program paths

State explosion problem
How to do it for

General programs with GoTos
Programs with Loops

e Symbolic execution of a Loop

Unknown repetitions

State explosion
Can’t be solved for every case using one algorithms

Enumerating Program Paths

* Gulwani et al.
non-deterministic semantics - no GoTos
* Burgstaller et al.
Path expressions algebra — with GoTos
Loops as black boxes

e Extend non-deterministic semantics to control flow
graphs

* Loop paths analysis
* Algorithm to

Enumerate Disjoint Program paths for any program

Symbolic execution
* Algorithm to

Do symbolic execution
Compute path condition

* Eliminate invalid paths

* For each loop in a program path, solve

* Closed form of loop induction variables

* Loop counter

Solving Program Loops

=0
array a[b-1]
while c < b and i>m and i<n
iI=i+1
j=j+b
d=2*d
c=c+1
a[c]=0 /* buffer overflow */
if e>0
f=f+2
NE
e=g*e

Recurrence System (for j) : j(i+1)=j(i)+b

Solutionis: j(i)=j(0)+i*b
Recurrence system for d : d(i+1)=2*d(i)
Solutionis: d(i)=2"*d,

Solving Program Loops

i=0

array a[b-1]

while c < b and i>m and i<n
iI=i+1

j=j+b
d=2*d
c=c+1
a[c]=0 /* buffer overflow */
if e>0
f=f+2
AN
e=g*e

Loop continue condition :

1.i >m :iisinrange [m+1,infinity]

2.i <n :iisinrange [-infinity,n-1]

And’ing the two we get : i is in range [m+1,n-1]

Loop non-entry condition is : m+1>n-1
Loop entry condition is : m+1<=n-1
Loop counter is : (n-1)-(m+1)=n-m-2

Values at end of loop :

j=Jo* (n-m-2)*b

d= dO * 2(n-m-2)

Solving Program Loops

* Computer Algebra algorithms to
 Solve recurrence systems

 Solve loop exit condition

e Solve loop counters as symbolic expressions

* Use skolmisation techniques for unsolvable cases

Path State Explosion

e Extend the notion of Burgstaller’s path expressions

e Extend Gulwani’s semantics

* Combine them together defining new

e non-deterministic domains

Path enumeration

if e>0

f=f+2
Else

e=g*e

Two program paths :
(1) Assume(e>0);f=f+2
(2) Assume (not €>0); e=g*e

i=0
array a[b-1]
while c < b and i>m and i<n
i=i+1
j=j+b
d=2*d
c=c+l
a[c]=0 /* buffer overflow */
if e>0
f=f+2
else
e=g*e

Program Path : 1=0; x™
* x is loop body and
* mu 1s number of loop iterations.
«2mu deterministic program paths in
* concrete domain as well as in
* symbolic domain.
* Only 3 non-deterministic program paths
e c>=b
e c<b&e>0&x,
* b<d & <=0 & x,

Experimental work

We develop program to
* Enumerate disjoint program paths
e path conditions
* Interface with a Computer Algebra System to
e Obtain closed form for loop induction variables

 Solve loop exit condition
 Solve loop counter

* Perform symbolic execution
* Array bound comparison

* Reporting array bound violation (Static analysis)

Experimental work

* Analyse a small program
for all possible paths
to crash it

Or

* Analyse an open source system

for Buffer Overflow reporting

Prioritised as

— Definite

— May be

With full set of counter examples

Summary

* Array access in loops causes buffer overflow error
* Enumerate disjoint program paths & conditions
* Non-deterministic semantics for path expressions

e Symbolic execution of program paths to identify buffer
overflows

* Program loops cause path enumeration state explosion

* Non-deterministic domains to reduce state explosion

References

References

[1] Johann Blieberger Bernd Burgstaller, Bernhard Scholz. Symbolic Analysis An Algebra-
based approach.

[2] G. Canfora, A. Cimitile, and A. De Lucia. Conditioned program slicing. Information and
Software Technology, 40(11-12):595607, 1998.

[3] T. Fahringer and B. Scholz. Advanced symbolic analysis for compilers. Springer-Verlag
New York, Inc. Secaucus, NJ, USA, 2003.

[4] Michael P. Gerlek, Eric Stoltz, and Michael Wolfe. Beyond induction variables: detecting
and classifying sequences using a demand-driven ssa form. ACM Trans. Program. Lang.
Syst., 17(1):85122, 1995.

[5] S. Gulwani, S. Jain, and E. Koskinen. Control-refinement and progress invariants for
bound analysis. PLDI, 2009.

[6] M.R. Haghighat and C.D. Polychronopoulos. Symbolic analysis for parallelizing
compilers. ACM Transactions on Programming Languages and Systems (TOPLAS), 18(4):
477518, 1996.

