
Generics in Data Parallel Haskell

Roman Leshchinskiy

Programming Languages and Systems
University of New South Wales

Joint work with
Manuel Chakravarty

Gabriele Keller
Simon Peyton Jones

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 1 / 14



Programming in DPH

Multiply sparse vector with dense vector

svvm :: [:(Int, Float):] → [:Float:] → Float
svvm v w = sumP [:x ∗ (w !: i) | (i , x) ← v :]

Multiply sparse matrix with dense vector

smvm :: [:[:(Int, Float):]:] → [:Float:] → Float
smvm m w = [:svvm v w | v ← m:]

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 2 / 14



Programming in DPH

Multiply sparse vector with dense vector

svvm :: [:(Int, Float):] → [:Float:] → Float
svvm v w = sumP [:x ∗ (w !: i) | (i , x) ← v :]

Multiply sparse matrix with dense vector

smvm :: [:[:(Int, Float):]:] → [:Float:] → Float
smvm m w = [:svvm v w | v ← m:]

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 2 / 14



Programming in DPH

Quicksort

qsort xs | lengthP xs ≤ 1 = xs
| otherwise = yss !: 0 +:+ eqs +:+ yss !: 1

where
m = xs !: 0
lts = [:y | y ← xs, y < m :]
eqs = [:y | y ← xs, y == m:]
gts = [:y | y ← xs, y > m :]
yss = [: qsort ys | ys ← [:lts, gts:]:]

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 2 / 14



Nested data parallelism

Great for programmers

single control flow

implicit synchronisation and communication

high-level specification of parallelism

transparent integration into Haskell

Bad for implementors

extensive program transformations

needs a very good optimiser

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 3 / 14



Architecture

DPH code

Vectorisation

vectorised code

Simplifier

efficient code

Mock library

Library

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 4 / 14



Design

Library Compiler

Fusio
n

G
ang

parallelism

Type transformation

Generic operations Type families

Rewrite
rules

Simplifier

P
ar

al
le

l
R

T
S

Vectoriser

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 5 / 14



Design

Library Compiler

Fusio
n

G
ang

parallelism

Type transformation

Generic operations

Type families

Rewrite
rules

Simplifier

P
ar

al
le

l
R

T
S

Vectoriser

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 5 / 14



Design

Library Compiler

Fusio
n

G
ang

parallelism

Type transformation

Generic operations

Type families

Rewrite
rules

Simplifier

P
ar

al
le

l
R

T
S

Vectoriser

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 5 / 14



Design

Library Compiler

Fusio
n

G
ang

parallelism

Type transformation

Generic operations

Type families

Rewrite
rules

Simplifier

P
ar

al
le

l
R

T
S

Vectoriser

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 5 / 14



Design

Library Compiler

Fusio
n

G
ang

parallelism

Type transformation

Generic operations

Type families

Rewrite
rules

Simplifier

P
ar

al
le

l
R

T
S

Vectoriser

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 5 / 14



Design

Library Compiler

Fusio
n

G
ang

parallelism

Type transformation

Generic operations

Type families

Rewrite
rules

Simplifier

P
ar

al
le

l
R

T
S

Vectoriser

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 5 / 14



Design

Library Compiler

Fusio
n

G
ang

parallelism

Type transformation

Generic operations

Type families

Rewrite
rules

Simplifier

P
ar

al
le

l
R

T
S

Vectoriser

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 5 / 14



Design

Library Compiler

Fusio
n

G
ang

parallelism

Type transformation

Generic operations

Type families

Rewrite
rules

Simplifier

P
ar

al
le

l
R

T
S

Vectoriser

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 5 / 14



Design

Library Compiler

Fusio
n

G
ang

parallelism

Type transformation

Generic operations

Type families

Rewrite
rules

Simplifier

P
ar

al
le

l
R

T
S

Vectoriser

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 5 / 14



Design

Library Compiler

Fusio
n

G
ang

parallelism

Type transformation

Generic operations

Type families

Rewrite
rules

Simplifier

P
ar

al
le

l
R

T
S

Vectoriser

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 5 / 14



Design

Library Compiler

Fusio
n

G
ang

parallelism

Type transformation

Generic operations Type families

Rewrite
rules

Simplifier

P
ar

al
le

l
R

T
S

Vectoriser

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 5 / 14



Vectorisation – Basic idea

Flattening transformation (Blelloch 1995)

Convert a nested data parallel program into a flat data parallel program

store nested arrays as flat arrays + segmenting information

modify computations accordingly

sv
vm

sv
vm

sv
vm

sv
vm

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 6 / 14



Vectorisation – Basic idea

Flattening transformation (Blelloch 1995)

Convert a nested data parallel program into a flat data parallel program

store nested arrays as flat arrays + segmenting information

modify computations accordingly

svvm svvm svvm svvm

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 6 / 14



Vectorisation – Basic idea

Flattening transformation (Blelloch 1995)

Convert a nested data parallel program into a flat data parallel program

store nested arrays as flat arrays + segmenting information

modify computations accordingly

svvm↑

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 6 / 14



Representing arrays

Non-parametric representation

data family [:a:]
data instance [:Double:] = PDouble ByteArray
data instance [:(a, b):] = PPair [:a:] [:b:]
data instance [:[:a:]:] = PNest Segd [:a:]

arrays of primitive types =⇒ memory blocks, no boxing!

arrays of tuples =⇒ tuples of arrays

nested arrays =⇒ flat data array + segmenting information

arrays of trees =⇒ trees of arrays

Sparse matrices

[:[:(0, 1.3), (2, 0.5):], [:(1, 3.4):], [::], [:(0, 4.3), (1, 2.2):]:]
=⇒ PNest 〈2, 1, 0, 2〉 (PPair [:0, 2, 1, 0, 1:] [:1.3, 0.5, 3.4, 4.3, 2.2:])

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 7 / 14



Operations on parallel arrays

How do we implement indexP :: [:a:] → Int → a?

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 8 / 14



Operations on parallel arrays

How do we implement indexP :: [:a:] → Int → a?

class PR a where
indexPR :: [:a:] → Int → a

instance PR Double where
indexPR (PDouble bytes) i = indexU bytes i

instance (PR a, PR b) ⇒ PR (a, b) where
indexPR (PPair xs ys) i = (indexPR xs i , indexPR ys i)

indexPV :: PR a ⇒ [:a:] → Int → a
indexPV = indexPR

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 8 / 14



Operations on parallel arrays

How do we implement indexP :: [:a:] → Int → a?

data PR a = PR { indexPR :: [:a:] → Int → a }

dPR Double :: PR Double
dPR Double = PR { indexPR = λ(PDouble bs) i → indexU bs i }

dPR Pair :: PR a → PR b → PR (a, b)
dPR Pair pra prb = PR { indexPR = λ(PPair xs ys) i →

(indexPR pra xs i , indexPR prb ys i) }

indexPV :: PR a → [:a:] → Int → a
indexPV = indexPR

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 8 / 14



Handling user-defined types

data Complex a = Complex a a
data instance [:Complex a:] = PComplex [:a:] [:a:]

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 9 / 14



Handling user-defined types

data Complex a = Complex a a
data instance [:Complex a:] = PComplex [:a:] [:a:]

Easy?

dPR Complex :: PR a → PR (Complex a)
dPR Complex pa = PR { indexPR = λ(PComplex xs ys) i →

Complex (indexPR pa xs i) (indexPR pa ys i) }

Problem

PR has 14 operations at the moment

there will be more in the future

compiler has to know how to generate them

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 9 / 14



Handling user-defined types

data Complex a = Complex a a
data instance [:Complex a:] = PComplex [:a:] [:a:]

Easy?

dPR Complex :: PR a → PR (Complex a)
dPR Complex pa = PR { indexPR = λ(PComplex xs ys) i →

Complex (indexPR pa xs i) (indexPR pa ys i) }

Problem

PR has 14 operations at the moment

there will be more in the future

compiler has to know how to generate them

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 9 / 14



Handling user-defined types

data Complex a = Complex a a
data instance [:Complex a:] = PComplex [:a:] [:a:]

Easy with generic programming!

associate user-defined types with a generic product-sum
representation

fixed set of representation types

vectoriser generates conversion functions

“real” operations are implemented in the library

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 9 / 14



Generic representations

type family PRepr a
type instance PRepr (a, b) = (a, b)
type instance PRepr (Complex a a) = (a, a)
type instance PRepr (Maybe a) = Sum2 a ()

data PA a = PA {
toPRepr :: a → PRepr a
fromPRepr :: PRepr a → a
toArrPRepr :: [:a:] → [:PRepr a:]
fromArrPRepr :: [:PRepr a:] → [:a:]
dictPRepr :: PR (PRepr a)}

dPA Complex :: PA a → PA (Complex a)
dPA Complex pa = PA { toPRepr = λ(Complex x y) → (x , y), . . . }

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 10 / 14



Generic representations

type family PRepr a
type instance PRepr (a, b) = (a, b)
type instance PRepr (Complex a a) = (a, a)
type instance PRepr (Maybe a) = Sum2 a ()

data PA a = PA {
toPRepr :: a → PRepr a
fromPRepr :: PRepr a → a
toArrPRepr :: [:a:] → [:PRepr a:]
fromArrPRepr :: [:PRepr a:] → [:a:]
dictPRepr :: PR (PRepr a)}

dPA Complex :: PA a → PA (Complex a)
dPA Complex pa = PA { toPRepr = λ(Complex x y) → (x , y), . . . }

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 10 / 14



Generic representations

type family PRepr a
type instance PRepr (a, b) = (a, b)
type instance PRepr (Complex a a) = (a, a)
type instance PRepr (Maybe a) = Sum2 a ()

data PA a = PA {
toPRepr :: a → PRepr a
fromPRepr :: PRepr a → a
toArrPRepr :: [:a:] → [:PRepr a:]
fromArrPRepr :: [:PRepr a:] → [:a:]
dictPRepr :: PR (PRepr a)}

dPA Complex :: PA a → PA (Complex a)
dPA Complex pa = PA { toPRepr = λ(Complex x y) → (x , y), . . . }

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 10 / 14



Generic operations

PR (a,a)PA (Complex a)
dictPRepr

[:(a,a):][:Complex a:]
PRepr

(a,a)Complex a
PRepr

type instance PRepr [:a:] = [:PRepr a:]

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 11 / 14



Generic operations

PR (a,a)PA (Complex a)
dictPRepr

[:(a,a):][:Complex a:]
PRepr

(a,a)Complex a
PRepr

type instance PRepr [:a:] = [:PRepr a:]

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 11 / 14



Implementing generic operations

Library

dPR Pair :: PR a → PR b → PR (a, b)
dPR Pair pra prb = PR { indexPR = λ(PPair xs ys) i →

(indexPR pra xs i , indexPR prb ys i) }

indexPV :: PA a → [:a:] → Int → a
indexPV pa xs i = fromPRepr pa

(indexPR (dictPRepr pa) (toArrPRepr pa xs) i)

Vectoriser

data instance [:Complex a:] = Complex [:a:] [:a:]
type instance PRepr (Complex a) = (a, a)

dPA Complex :: PA a → PA (Complex a)
dPA Complex pa = PA { toPRepr = λ(Complex x y) → (x , y) . . . }

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 12 / 14



Implementing generic operations

Library

dPR Pair :: PR a → PR b → PR (a, b)
dPR Pair pra prb = PR { indexPR = λ(PPair xs ys) i →

(indexPR pra xs i , indexPR prb ys i) }

indexPV :: PA a → [:a:] → Int → a
indexPV pa xs i = fromPRepr pa

(indexPR (dictPRepr pa) (toArrPRepr pa xs) i)

Vectoriser

data instance [:Complex a:] = Complex [:a:] [:a:]
type instance PRepr (Complex a) = (a, a)

dPA Complex :: PA a → PA (Complex a)
dPA Complex pa = PA { toPRepr = λ(Complex x y) → (x , y) . . . }

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 12 / 14



Architecture – now with one more line!

DPH code

Vectorisation

vectorised code

Simplifier

efficient code

Mock library
of parametric operations

indexP :: [:a:] → Int → a

Library of “real” operations
indexPV :: PA a →

[:a:] → Int → a

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 13 / 14



Type families + generics are good ...

... for DPH

minimise knowledge built into the vectoriser

keep library code in the library

very efficient

we can give talks about it!

... for everything else

new approach to implementing generics

design pattern directly supported by the language

no performance penalty

we can write papers about it!

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 14 / 14



Type families + generics are good ...

... for DPH

minimise knowledge built into the vectoriser

keep library code in the library

very efficient

we can give talks about it!

... for everything else

new approach to implementing generics

design pattern directly supported by the language

no performance penalty

we can write papers about it!

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 14 / 14



Type families + generics are good ...

... for DPH

minimise knowledge built into the vectoriser

keep library code in the library

very efficient

we can give talks about it!

... for everything else

new approach to implementing generics

design pattern directly supported by the language

no performance penalty

we can write papers about it!

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 14 / 14



Type families + generics are good ...

... for DPH

minimise knowledge built into the vectoriser

keep library code in the library

very efficient

we can give talks about it!

... for everything else

new approach to implementing generics

design pattern directly supported by the language

no performance penalty

we can write papers about it!

Roman Leshchinskiy (UNSW) Generics in Data Parallel Haskell 14 / 14


