ACCELERATED PROTEIN MATCHING,
USING GPUS

il SRS cDonell
University of New South Wales

Friday, 2 October 2009



Case Study: Protein Matching

» Still difficult to write parallel software
» Parallel implementation of a real world algorithm
» use common Haskell functions, implemented on the GPU

* hide GPU architectural details
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llustration by Tony Boudreault
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llustration by Tony Boudreault
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Quadcore

Yeon CPU Tesla T10 GPU

==24() cores::

4:cores

» lens of thousands of data parallel threads

» Speedups of |0x to 200x have been observed in real
applications
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import Foreign.C

mallocBytes :: Int -> |O (Ptr a)
free :: Ptra -> |O ()

newArray :: [a] -> |O (Ptr a)
withArray ::[a] -> (Ptra-> 10 b) -> 10 b
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import Foreign.CUDA

type DevicePtr a

mallocBytes : Int -> |O (DevicePtr a)
free :: DevicePtr a -> 10 ()

newArray :: [a] -> 1O (DevicePtr a)
withArray :: [a] -> (DevicePtra -> 10 b) -> IO b
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Parallel Operations

» Efficient implementations in CUDA, called from Haskell
» Use templates to express type and (associative) operation

* map, zipWith, prescan, permute, backpermute

int fold_plusi(int xs, int N) {
return fold< Plus<int>, int >(xs, N);

J
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Parallel Operations

dotp :: [Float] -> [Float] -> IO Float
dotp xs ys =
withArray xs $ \xs’ ->
withArraylLen ys $ \len ys’ ->
allocaBytes (len * sizeOf (undefined::Float)) $ \zs’ -> do
zipWith_timesf xs’ ys’ zs’ len
fold_plusf zs’ len
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Results

» Database ~20k proteins

CPU Version 3 seconds
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A First Attempt

* Just compute the final score (dot product) on the GPU

* Minimal code changes, just need to deal with |O now
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Results

» Database ~20k proteins

CPU Version 3 sec

First version: individual dot product JSEC
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A Second Attempt

* Individual dot products weren't enough to offset the cost of
data transfer

» Each protein in the database Is split into many peptides, try to
consider them all at once
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Results

» Database ~20k proteins

CPU Version 3 sec

First version: individual dot product JSEC

Second version: matrix vector multiply 2{0) cec
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HMmm...

» Turns out most candidates can be filtered out, so spend a lot
of time transferring data that is ultimately not used

* Profiling output:

Marshalling
COST CENTRE |ODULE Btime ®alloc ticks bytes

digestProtein Protein S 9 6569 16693476851

0.6
segextract Protein - 1.2 180 2604206959
0.9

scanrlSeg plusf Kernels 138 841209

Computation
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Conclusion

* | have found two ways to not parallelise this algorithm
- Status:

* Bindings to CUDA functions

* Needs a front-end for a more Haskell-ish interface
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