ACCELERATED PROTEIN MATCHING,
USING GPUS

il SRS cDonell
University of New South Wales

Friday, 2 October 2009

Case Study: Protein Matching

» Still difficult to write parallel software
» Parallel implementation of a real world algorithm
» use common Haskell functions, implemented on the GPU

* hide GPU architectural details

Friday, 2 October 2009

llustration by Tony Boudreault

Friday, 2 October 2009

llustration by Tony Boudreault

= by1 24 b33 b5v5 b6 y6 i b&8 WSO b1d0 b11
100% 1£28.73 AMU J+2 H (Parkrt Error: 0 ppm)
L S L | V E S K
> S—it b—v | 4—4—L 4—4—5S | V—H—L =
2
S
£
()
-
s
(M)
m M_—M_M—J
LI | i 11 1 1 1 1
13 ||500 | | | 750. | 1p00
i i Mz I I I I
b2 b3 ’ 4 vS y6 v7 y8 v9
100% ‘ﬁ'ﬂ% 123873 AMU, 2 H garent Error; 3.4 ppm)
—L H—-S——L—+1 V—HH—E— t
2 —S— Vv e e S L o s e e ey e Ry o =
c
8 4
— 0/ - a2
S 50/°‘ y3 yahoy D5-H20 | bEH20
% Y‘ 4 vl I+ 4
o b5 b6
. A b b8 9 b0
0
0 250 500 750 1000
Mz

Friday, 2 October 2009

Quadcore

Yeon CPU Tesla T10 GPU

==24() cores::

4:cores

» lens of thousands of data parallel threads

» Speedups of |0x to 200x have been observed in real
applications

Friday, 2 October 2009

import Foreign.C

mallocBytes :: Int -> |O (Ptr a)
free :: Ptra -> |O ()

newArray :: [a] -> |O (Ptr a)
withArray ::[a] -> (Ptra-> 10 b) -> 10 b

Friday, 2 October 2009

import Foreign.CUDA

type DevicePtr a

mallocBytes : Int -> |O (DevicePtr a)
free :: DevicePtr a -> 10 ()

newArray :: [a] -> 1O (DevicePtr a)
withArray :: [a] -> (DevicePtra -> 10 b) -> IO b

Friday, 2 October 2009

Parallel Operations

» Efficient implementations in CUDA, called from Haskell
» Use templates to express type and (associative) operation

* map, zipWith, prescan, permute, backpermute

int fold_plusi(int xs, int N) {
return fold< Plus<int>, int >(xs, N);

J

Friday, 2 October 2009

Parallel Operations

dotp :: [Float] -> [Float] -> IO Float
dotp xs ys =
withArray xs $ \xs’ ->
withArraylLen ys $ \len ys’ ->
allocaBytes (len * sizeOf (undefined::Float)) $ \zs’ -> do
zipWith_timesf xs’ ys’ zs’ len
fold_plusf zs’ len

Friday, 2 October 2009

Results

» Database ~20k proteins

CPU Version 3 seconds

Friday, 2 October 2009

A First Attempt

* Just compute the final score (dot product) on the GPU

* Minimal code changes, just need to deal with |O now

Friday, 2 October 2009

Results

» Database ~20k proteins

CPU Version 3 sec

First version: individual dot product JSEC

Friday, 2 October 2009

A Second Attempt

* Individual dot products weren't enough to offset the cost of
data transfer

» Each protein in the database Is split into many peptides, try to
consider them all at once

Friday, 2 October 2009

Results

» Database ~20k proteins

CPU Version 3 sec

First version: individual dot product JSEC

Second version: matrix vector multiply 2{0) cec

Friday, 2 October 2009

HMmm...

» Turns out most candidates can be filtered out, so spend a lot
of time transferring data that is ultimately not used

* Profiling output:

Marshalling
COST CENTRE |ODULE Btime ®alloc ticks bytes

digestProtein Protein S 9 6569 16693476851

0.6
segextract Protein - 1.2 180 2604206959
0.9

scanrlSeg plusf Kernels 138 841209

Computation

Friday, 2 October 2009

Conclusion

* | have found two ways to not parallelise this algorithm
- Status:

* Bindings to CUDA functions

* Needs a front-end for a more Haskell-ish interface

Friday, 2 October 2009

