
ACCELERATED PROTEIN MATCHING,
USING GPUS
Trevor L. McDonell
University of New South Wales

Friday, 2 October 2009

Case Study: Protein Matching

• Still difficult to write parallel software

• Parallel implementation of a real world algorithm

• use common Haskell functions, implemented on the GPU

• hide GPU architectural details

Friday, 2 October 2009

SEQUESTA

A

I

K

G

K

I

D
V

C

V

I

L

L

Q H

K

A

E

P

T
I

R

N

T

D

G R

T

A

Illustration by Tony Boudreault

Friday, 2 October 2009

R

R

K

K

A

A

I

G

K

I

D
V

C

V

I

L

L

Q H

A

E

P

T
I

N

T

D

G

T

A

SEQUEST

Illustration by Tony Boudreault

Friday, 2 October 2009

Friday, 2 October 2009

• Tens of thousands of data parallel threads

• Speedups of 10x to 200x have been observed in real
applications

Quadcore
Xeon CPU Tesla T10 GPU

Friday, 2 October 2009

import Foreign.C

mallocBytes :: Int -> IO (Ptr a)
free :: Ptr a -> IO ()

newArray :: [a] -> IO (Ptr a)
withArray :: [a] -> (Ptr a -> IO b) -> IO b

Friday, 2 October 2009

import Foreign.CUDA

type DevicePtr a

mallocBytes :: Int -> IO (DevicePtr a)
free :: DevicePtr a -> IO ()

newArray :: [a] -> IO (DevicePtr a)
withArray :: [a] -> (DevicePtr a -> IO b) -> IO b

Friday, 2 October 2009

Parallel Operations

• Efficient implementations in CUDA, called from Haskell

• Use templates to express type and (associative) operation

•map, zipWith, prescan, permute, backpermute

int fold_plusi(int xs, int N) {
 return fold< Plus<int>, int >(xs, N);
}

Friday, 2 October 2009

Dot Product

dotp :: [Float] -> [Float] -> IO Float
dotp xs ys =
 withArray xs $ \xs’ ->
 withArrayLen ys $ \len ys’ ->
 allocaBytes (len * sizeOf (undefined::Float)) $ \zs’ -> do
 zipWith_timesf xs’ ys’ zs’ len
 fold_plusf zs’ len

Parallel Operations

Friday, 2 October 2009

Results

•Database ~20k proteins

CPU Version 3 seconds

Friday, 2 October 2009

A First Attempt

• Just compute the final score (dot product) on the GPU

•Minimal code changes, just need to deal with IO now

Friday, 2 October 2009

Results

•Database ~20k proteins

CPU Version 3 sec

First version: individual dot product 7 sec

Friday, 2 October 2009

A Second Attempt

• Individual dot products weren’t enough to offset the cost of
data transfer

• Each protein in the database is split into many peptides, try to
consider them all at once

Friday, 2 October 2009

Results

•Database ~20k proteins

CPU Version 3 sec

First version: individual dot product 7 sec

Second version: matrix vector multiply 40 sec

Friday, 2 October 2009

Hmm...

• Turns out most candidates can be filtered out, so spend a lot
of time transferring data that is ultimately not used

• Profiling output:

COST CENTRE MODULE %time %alloc ticks bytes

digestProtein Protein 87.2 95.6 6569 16693476851
seqextract Protein 2.4 1.2 180 204206959
scanr1Seg_plusf Kernels 1.8 0.0 138 841209

...

Marshalling

Computation

Friday, 2 October 2009

Conclusion

• I have found two ways to not parallelise this algorithm

• Status:

• Bindings to CUDA functions

•Needs a front-end for a more Haskell-ish interface

Friday, 2 October 2009

