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  The problem 
  Flexible Alias Protection 

  Implicit structure in object graphs 
  Ins and Outs of Objects 

  Imposing object structure in programs 
  Ownership Types 

  Variations on the ownership theme 
  Ownership and accessibility 
  Ownership effect systems 
  Object validity 

  Oval 



The Problem 
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  Aliasing is endemic in OO programming 
  Objects have identity + mutable state 
  Knowing the object ID gives access to the object state 

 Either directly or indirectly 

  Mutable state + sharing creates problems 
  To understand program behaviour: 

 An object’s invariants may depend on other aliased objects 
 Need to understand the topology of the object graph 
 Loses modularity in program reasoning 

  When objects are updated, their clients may need to adapt 
 But there may be no local knowledge of this object dependency 
 Object notification is difficult 



Ownership Prehistory: The Geneva Convention 
on the Treatment of Object Aliasing 
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  Formulated by 5 researchers at ECOOP’91 
 John Hogg, Bell-Northern Research & 

Doug Lea, SUNY Oswego &  
Alan Wills, University of Manchester &  
Dennis deChampeaux, Hewlett-Packard &  
Richard Holt, University of Toronto 

  Will port1 transferTo: port2 amount: $100.00 really 
decrease the amount of money in port1 
  Two ways to fail: 

 port1 == port2 which is easy to check for (a direct alias) 
 Or the two portfolios share the internal account involved in the 

transfer  which is not easy to check for (an indirect alias) 



Ownership Prehistory: The Geneva Convention 
on the Treatment of Object Aliasing 
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  Categorised 4 approaches to aliasing: 
  Detection. 

 Static or dynamic (run-time) diagnosis of potential or actual 
aliasing. 

  Advertisement. 
 Annotations that help modularize detection by declaring aliasing 

properties of methods. 
  Prevention. 

 Constructs that disallow aliasing in a statically checkable fashion. 

  Control. 
 Methods that isolate the effects of aliasing.  



Ownership Prehistory: 
Full Encapsulation: Islands and Balloons 
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  Islands (Hogg 91) and Balloons (Almeida 97) provide 
alias protection 

  Full encapsulation => objects inside an island/balloon 
  Cannot be referenced from outside 
  Cannot refer to other objects outside 

  Internal aliasing is OK 
  Tends to be overly restrictive 

  A container cannot share its elements with another container 
  To allow ease of use of encapsulated objects, both approaches allow 

dynamic aliases (via local variables) 
  Enforcement of full encapsulation 

  Islands used annotations with run-time checks 
  Balloons advocated a complex static analysis 

 Unusable in practice 



Ownership Conception: Flexible Alias Protection 
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  Noble, Vitek, Potter: ECOOP’98 

  Language level access modifiers are too weak 
  An object referenced via a private field may be returned via a 

public method 
 Gave rise to security hole in Java 1 applet security model 

  Access modifiers do not control aliasing 

  Full encapsulation techniques are too strong 

  Flexible alias protection aims to allow benign forms 
of aliasing  



Ownership Conception: Flexible Alias Protection 
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  Aliasing modes for object references 
  Rep 

 For internal representation 
 Allows internal aliasing but no export 

  Arg (with Role) 
 For “arguments” or shareable elements of a container 
 Only access immutable interface of referenced objects 

  Free 
 For new unbound objects 

  Val 
  Immutable objects 

  Var (with Role) 
 The escape hatch … 



Ownership Conception: Flexible Alias Protection 
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class Course<arg s Student> { 
 private rep Hashtable<arg s Student, rep RawMark> 
 marks = new Hashtable(); 

 public void enrol (arg s Student s) { 
  rep RawMark r = new RawMark(); 
  marks.put(s, r); 
 } 

 public void recordMarkFor(arg s Student s, 
      val String workUnit, 
      val int mark) { 
  marks.get(s).recordMarkFor(workUnit, mark); 
 } 

 public void finalReport (arg s Student s) { 
  marks.get(s).finalReport(); 
 } 

} 



Ownership Conception: Flexible Alias Protection 
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  No formal model developed 
  Implementation attempted (by Dave Clarke) in Pizza 

  Martin Odersky’s experiment with generics in Java 
  Provided a vehicle with type parametric classes 
  Pizza type checking code hard to modify 
  Unspecified type rules to implement! 

  Inspirations from FLAP 
  Need to be able to partition object graphs somehow 
  Need to develop a formal type system 
  Issues with various code idioms and design patterns 
  Potential applications such as memory management and 

concurrency control 



Prenatal Ownership: 
Implicit Structure in Object Graphs 

SAPLING Talk  2/10/2009 John POTTER, Yi LU  Ownership Types After Ten Years 

11 

  The Ins and Outs of Objects 
  J. Potter, J. Noble, and D. Clarke. 

  In Australian Software Engineering Conference (ASWEC), 1998 
 Most Valuable Paper awarded in 2008 

  Partitioning of object graph 
  Lattice structure for sets of separating objects 
  James told John it’s too complex 
  Attempt to focus on simplest separators led to rediscovery of 

graph dominator concept 
  If I’d known more about compilers I would have known about 

dominators! 



An Object Graph 
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  an application object r 
  list header objects a, b 

  a and b are doubly linked 
lists 

  they share data content 
 data objects c1, c2, c3, c4 

  their link objects are not 
shared 
  link objects a1, a2, a3, a4 

  link objects b1, b2, b3, b4 •  list b is the reverse 
of list a 



The Ins and Outs of Objects 
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  all reference paths to an object from a root object 
may share  
  in graph theory, these are called articulation points, or 

dominators 

  the dominators form a tree structure 
  our idea: the dominator tree (often) captures the 

intended object encapsulation structure 



Object Dominator Tree 
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  the blocks in the diagram 
are associated with an 
owner object 

  the blocks contain the 
objects dominated by the 
owner 
  e.g. a1 is dominated by a 
  c1 is not dominated by a 

  there is an alternative path 
from r to c1 via b 



Ownership Invariant 
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  the object reference structure induces the 
dominator (or ownership) tree 

  think of the objects dominated by an owner as 
being inside the owner 

  object references can only cross ownership 
boundaries from the inside to the outside 

  the ownership invariant: given objects x, y 
if  x refers to y 
then  owner(y) dominates x 



Ownership Monitoring 
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  track dominator tree for all objects on the heap at 
run-time 

  ownership will need to be updated if the ownership 
invariant is violated 
  this can only happen with object field assignment 

  in practice for Java, the stack plays the role of a 
root object, and we further exploit the stack 
structure to yield a stack of dominator trees 
  dominator update is a challenging algorithm 

  version 1: hacked the source code of a JVM 
  version 2: instrumented bytecode 



Object Visualisation 
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  Idea: display object graph at run-time 
  problem: how to do graph layout? 
  solution: use a tree structure 
  problem: what tree? 

  Creation tree: creator as parent 
  advantage: creator is fixed 
  problem: objects often out-live their creators 

  Ownership tree: owner as parent 
  advantage: relatively stable, owners out-live their objects, 

references do not cross into encapsulations 
  problem: ownership needs to be updated dynamically 



Object Visualisation 
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  OTOG was first attempt: same example as above 

Figure 5. OTOG Graph Layout 



Object Visualisation 
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  Dino was greatly improved second attempt 
  Moral: student slaves produce better work than paid lackeys 

  Trent Hill, 4th year project at Macquarie 

Figure 7. Arma-Dino Ownership Tree 



More Than One Thread 
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Figure 10. DINO Layout 



Displaying Class Names 
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Figure 13. Example Visualisation (cont’d) 



Collapsing Tree Nodes 
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Figure 14. Collapsed Nodes 



Alternative Views 
23 

Figure 15. Verbose, Brief and Compressed Modes 



Views of Ownership 
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Figure 16. Normal, Set and Cell Views 



The Birth of Ownership Types 
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  Dynamic monitoring extracts intended object 
encapsulation 

  Why not allow programmers to document their 
intentions? 
  Then perhaps a compiler could check for unintended breaches 

of encapsulation 

  First publication on ownership types 
  Clarke, Potter and Noble 

 Ownership Types for Flexible Alias Protection 
 OOPSLA 1998 
 Awarded Most Valuable Paper in 2008 



Ownership Types 
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  Every class has an owner parameter 
  when a new object of the class is created, the owner must be 

specified 
  either using an existing owner, or as this 
  all existing owners are accessed via type parameters 

  Objects owned by this are internal objects 
  their type cannot be accessed by any other external object 
  inability to name this is how we statically enforce the 

ownership invariant 
  now called the owners-as-dominators model 

  The owner is part of the type of an object 
  dynamically, ownership forms a tree which is extended with each 

new object creation 
  ownership types are a simple kind of dynamic type 
  syntactically, this can work nicely with generic types 



Example for Ownership Types 
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class Stack<X> { 

 this::Link<X> head; 

 void add(X x) { 
  temp = head; 
  head = new this::Link<X>; 
  head.next = temp; 
  head.element = x; 
 } 

 X get() { 
  return head.element; 
 } 

} 

class Link<X> { 
 owner::Link<X> next; 
 X element; 

} 



Warning on Syntax 
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  If you read our papers, you will find the syntax 
much heavier than this 
  We use explicit ownership parameters, and do not marry 

with generic types 
  This syntax allows us to focus on the key theoretical 

points 
  Alex Potanin’s Ownership Generic Java 

  Blends ownership type parameters with  
  Requires minimal change to Java 5+ type checker 
  Uses sensible defaults 

  objects with unspecified owner are in the top level ownership 
context (i.e. the root level) 

  such objects are not encapsulated and can be accessed from 
anywhere 



Dave Clarke 
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  PhD thesis 
  Object Ownership and Containment 
  completed at UNSW in 2001 (Dave’s now at Leuven) 

  Formal model 
  Presented in Cardelli’s Object Calculus 

  Recognised distinction between 
  rep defining reference capability for an object 
  owner defining accessibility 

  In Dave’s model this may be an ancestor of rep rather than just a parent 

  Extends owners-as-dominators 
  X can reference Y  X.rep is inside Y.owner 

  Many other issues and extensions addressed informally in his 
thesis 
  Required reading for anyone working in ownership related areas 



Related Work on Ownership 
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 Boyapati: uses ownership for separating between 
per thread objects, and shared objects 
  synchronisation control only needed on shared objects 

 Other related models: 
  Boskowski and Vitek: confined types 
  Aldrich and Chambers: ownership domains and ArchJava 
  Muller: Universes 
  Clarke and Wrigstad: external uniqueness 
  Boyapati and Liskov: uses inner classes to provide limited 

form of exposure e.g. for iterators 



Ownership and Accessibility 
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  Lu and Potter 
  On Ownership and Accessibility 
  ECOOP 2006 

  Similar to Dave Clarke’s separation of capability and 
accessibility 
  But Clarke’s model specifies both capability and accessibility as part 

of object type 
  Lu and Potter define accessibility for reference types, rather than for 

object types 
  And provide a Java-like notation instead of the Object Calculus 
  New expressions ignore accessibility (object creation) 
  Type declarations require accessibility (use of a reference) 



Ownership and Accessibility: Example 
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  class List<o, d> { Node<this, d> head; … } 

 The client can reference both list and its elements 

list 

node 

data 

client 
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  class List<o, d> { Node<this, d> head; … } 

 The client can NOT reference the node objects 
owned by the list – it cannot name this inside the 
list object 

list 

node 

data 

client 
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  class List<o, d> { Node<this, d> head; … } 

  A problem: where should we put an iterator? 

list 

data 

client 

I
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  class List<o, d> { Node<this, d> head; … } 

  A problem: where should we put an iterator? 

list 

data 

client 

I



Ownership and Accessibility 
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  The challenges and forces: 

  Iterators must reference the list’s representation (nodes) 
  Iterators must be used by the client 
  Iterators must NOT expose nodes to the client 

  Reference type: 
  [access] C<capability list> 
  access is a single owner context  

 Determines the object’s accessibility 
  accessibility invariant: 

  If x→y then x ≤ y.access 

  Allows much more flexible reference structures 



A list example with iterator 
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class List<o, d> { 
    [this] Node<this, d> head; 
    [o] Iterator<this, d> getIter() { return new [o]Iterator<this, d>(head); } } 

class Iterator<o, d> { 
    [o] Node<o, d> current; 
    [d] Data element() { return current.data; } } 

// client code 
List<this, world> list = new List<this, world>(); 
[this] Iterator<*, world> iter = list.getIter(); // OK 
… = iter.current // ERROR, type is [?] Node<?, d> 
iter.element().useMe(); // OK, type is [world] Data 
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A list example with iterator 

class List<o, d> { 
    [this] Node<this, d> head; 
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list 

world 
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A list example with iterator 
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A list example with iterator 
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A list example with iterator 
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Ownership Effect Systems 
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  Greenhouse and Boyland 
  An object-oriented effects system ECOOP 1999 
  Later work on fractional permissions by Boyland 

  Clarke and Drossopolou 
  Ownership, encapsulation and disjointness of type and effect. OOPSLA 2002 
  “JOE” 

  N. Cameron, S. Drossopoulou, J. Noble, and M. Smith 
  Multiple Ownership OOPSLA 2007 
  “MOJO” 

  Read-only and immutability 
  Muller and various others 99+ 

  Universes 
  Birka and Ernst 02 

  Javari 



Ownership and Object Validity 
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  Lu and Potter 
  Effective Ownership POPL 2007 

  Lu, Potter and Xue 
  Validity invariants and effects ECOOP 2007 
  “Oval” 
  Key ideas: 

 Ownership confined dependency 
 Validity contracts for methods 

  Specifies what objects are valid before and after  
•  The Validity Invariant 

  and what may be invalidated 
•  The Validity Effect 



Ownership-confined Dependency 

  An object’s invariant can 
only depend on its state 
and states of its owned 
objects. 

  Dependency is reflexive 
and transitive 

  If x is valid, then all 
objects x depends on 
must be valid too 

top 

y 

x 



Ownership-confined Dependency 

top 

y 

x 

  An object’s invariant can 
only depend on its state 
and states of its owned 
objects. 

  Dependency is reflexive 
and transitive 

  If x is updated, then all 
objects depending on x 
become invalid 



Ownership-confined Dependency 

top 

y 

x 

  If x is updated, then all 
objects depending on x 
become invalid 

  If x was originally valid 
before update, then all 
objects owned by x are 
still valid 



Validity Contract in Oval <I, E> 

top 

I 

  m(…) <I, E> { … } 

  I is the top of the sub-
tree 

  It abstracts the validity 
invariant sub-tree 



Validity Contract in Oval <I, E> 

  m(…) <I, E> { … } 

  E is the bottom of the 
branch from top 

  It abstracts the validity 
effect branch 

top 

E 



Validity Contract in Oval <I, E> 

  If I < E 

  No overlap between 
validity invariant and 
effect 

  No validation is required 

top 

I 

E 



Validity Contract in Oval <I, E> 

  If I = E 

  The only overlap is the 
local object 
  I = E = this 

  Validation is required for 
the local object this 

top 

I, E 



Our Current Work 
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  Extending the Oval model 
  Pre and postconditions for validity contracts 
  Yields a flow sensitive type system 
  Introduce an explicit validity assumption statement to cover 

lack of reasoning about actual program states 
  System reasons with 2 states per object: valid and invalid 
  More subtle than it looks! 

  Ownership-based effects and interference 
  Synchronisation requirements inference 
  Automatic lock generation and allocation 



In Retrospect 
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  Ownership types have gained a lot of attention 
  Even though no real popular uptake in PLs 

  Annotation burden 
  Overly restrictive type rules 

  Experimental language features should not be rushed into 
production 

  We continue to learn more about how ownership concepts 
can be usefully deployed 

  Need to combine ownership concepts with other related 
ideas 
  Separation logic 
  Regions 



Key Ideas for Ownership 
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  Object ownership is determined at creation time 
  Just like object identity, but is programmer specified 
  Imposing object structure is a sensible thing to do 

  Parametric ownership types gives reasonable flexibility 
  Need to integrate with parametric types better than OGJ 
  Need expressive constraint language for assumptions on type/ownership 

parameters 
  Want good choice of defaults and good inference algorithms to minimise 

annotation burden 
  Different type rules can be used to achieve different kinds of 

ownership policies 
  Separation of object capability and reference accessibility 
  Need to be able to parametrise the type system for different policies for different 

types of objects 
  Ownership based effect systems offer the promise of more precise reasoning 

about effects than other kinds of systems 
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