
Synthesis of Software Kernels in Hardware

Vitaly Nikolyenko
vnik5287@uni.sydney.edu.au

Abstract

Applications typically exhibit vastly different performance characteristics,
requiring various amounts of computational resources. Despite this applica-
tion diversity, hardware-to-software, i.e., designing applications for a specific
fixed architecture, remains to be the most common approach in software
construction.

On the contrary, reconfigurable computing allows for a software-to-hardware
approach, i.e., designing an architecture for a specific task. This approach
targets application requirements instead, in order to produce an optimal
domain-specific solution. Furthermore, substantial benefits often can be
achieved by reimplementing a software’s critical regions (or critical kernels)
as a custom reconfigurable circuit coprocessor.

However, efficient hardware/software co-synthesis still remains a major chal-
lenge in reconfigurable computing. An efficient scheduling algorithm is re-
quired to get close to performance offered by fixed application-specific custom
circuits.

Scheduling alone is an NP-hard problem. Furthermore, massively parallel
architectures implementing local register files add extra complexity, since
cross-links (i.e., communication channels between processing elements) must
be considered when performing schedule allocations.

An optimal schedule can be found by expressing the scheduling problem
as a multi-objective function of reducing the makespan and minimising the
required number of cross-links. Integer linear programming (ILP) can then
be used for most given problem instances to produce and optimal schedule
considering the cross-links constraints. Of course, this mathematical program
is not practical for large problem sizes but it is a good yardstick to compare
how good available heuristics perform in comparison to the optimal solution.

1


