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Stream Programming Paradigm

Research topic in parallel programming
Various forms of parallelism

o Pipeline, task, and data Stream
Applications 1
o Signal Processing Actor
o Multi-media 1

Stream

o High-Performance Computing

Programs expressed as stream graphs
o Streams
Infinite sequence of data elements (aka. Tokens)

o Actor
Functions applied to streams



Properties ot Stream Program

Regular and repeating
computation

Independent actors with explicit L
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Streamlt Language [ASPLOS’2&6, PLLDI’3]
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‘ Research Question: How to Eliminate
Bottlenecks (Hot Actors) from Stream




‘ Mapping Actors
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Bottleneck Actors Limit the Performance
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Bottleneck Resolving of Stream Program

Contd.

Current state of the art

o Integer Linear Programming
Intractable

How to find a fast and good solution?
o Heuristics
o Optimal
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Our Work

A data rate transfer model to detect and
eliminate bottlenecks

We separate the bottleneck elimination from
the actor allocation

Heuristics to solve bottleneck problem
efficiently

13



Our Data Transfer Model

Throughput depends on the data rate of the
actors (maximize)

Data transfer model forms a system of sim.
functional linear equation

Compute a closed form of the output data rate

We also consider a processor utilization
function for each actor
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Bottleneck Analysis

The throughput is limited by

o Processor capacity of the cores

o Memory bandwidth

A quantitative analysis determines

2 An upper bound of the throughput imposed by an
actor

o An upper bound of the throughput imposed by the
parallel system

Hot actor
o Upper bound (actor) < upper bound (system)
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Hot Region

Maximal connected subgraph
h=W',E') where V'CV.,E'CE
and each i€V’ is hot and
stateless
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‘ Resolving Bottleneck Options
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Region Duplication further Increases

Performance
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Cascading Etfect of Duplication

= Actors may become hot due to duplication of
other actors

_—

A
)
s1
!
B_

B_1

2

S

B_3

A

Mid ojldold old >

C

CJ\‘

'

1

—

=)

2
A 2
E

C_3

=




Duplication Factor of an Actor and a Hot

Region
The # of times the actor needs
to be duplicated d; > 1

Maximum duplication factor of
the actors of the hot region
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Heuristics to Resolve Bottlenecks

Optimal solution?

Experiment

Determine hot regions

Determine duplication
factors of hot regions

Duplicate hot regions
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Summary

A simple quantitative analysis to detect and

eliminate bottlenecks

We separate the bottleneck elimination from

the actor allocation

Heuristics to eliminate bottlenecks
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