Bottleneck Elimination from

Stream Graphs

S. M. Farhad
The University of Sydney
Joint work with
Yousun Ko

Bernd Burgstaller
Bernhard Scholz

Outline

Motivation
o Multicore
0 Stream programming

Research question
Our work
Summary

Multicores Are Here!

512

256
128
64

of 32

cores

Picochip = Ambric
PC102 AA 0045

Cisco
CSR-1 A
Intel

Tflops
A

Raza Cavium
Raw XLR Octeon

A A

Niagara 4 Acell

Broadcom 1480 Opteron 4P

Xbox360 A

PA-8800 Opteron Tanglewood

POWEIA Aot o
PExtrel?gnahPowerB
4004 8080 8086 286 386 486 Pentium P2 P3 Itanium
‘A A A ‘ A ‘ A A M'P4 AA
8008 Athlon Itanium 2
1970 1975 1980 1985 1990 1995 2000 2005 207?77

3

Multicores Are Here!

512

256
128
64

of 32

cores

Picochip = Ambric
PC102 AA 0045

Cisco A

______ Uniprocessors:
C.isthe common........._._ Rt

A

_____ mach|ne|anuae

Raza Cavium
Raw XLR Octeon

A A

Niagara 4 Acell

Opteron 4P

Broadcom 1480
A-AA - Yeon MP

Xbox360 A

PA-8800 Qpteron Tanglewood
POWEIA Al do e

PExtreme Power6

5080 8086 286 386 286 Pentium P2 P3 Tanmm—2nah
A A A A A A A

“P4 AA
Athlon_/lta‘ﬁﬁm 2

1970 1975 1980 1985 1990 1995 2000 2005 207?77

4

Multicores Are Here!

519} What is.the. common......_. TN

256 mchmelanguag e o

128 fr multlcres P ¢ SR1ITnf:§IpS
64

of 32 / R Raza Cavium

XLR Octeon

cores 10 / * aod

Niagara 4 Acell

Opteron 4P

Broadcom 1480

Xbox360 A
PA-8800 Opteron Tanglewood
2 POWEIA Aot o

PExtreme Power6

4004 8080 8086 286 386 486 Pentium P2 P3 Itaniu
1V-A-Ak A A A A A APk
8008 Athlon Itanium 2

1970 1975 1980 1985 1990 1995 2000 2005 207?77

5

Stream Programming Paradigm

Research topic in parallel programming
Various forms of parallelism

o Pipeline, task, and data Stream
Applications 1
o Signal Processing Actor
o Multi-media 1

Stream

o High-Performance Computing

Programs expressed as stream graphs
o Streams
Infinite sequence of data elements (aka. Tokens)

o Actor
Functions applied to streams

Properties ot Stream Program

Regular and repeating
computation

Independent actors with explicit L

®
HPF1] [HPFZ] h—IPF3

@

[]

communication

o Producer / Consumer
dependencies

AtoD

FMDemod

Splitter

o
00 |00

Joiner

Adder
L4

Speaker

Streamlt Language [ASPLOS’2&6, PLLDI’3]

filter — —

pipeline

= An implementation m[:& T may be
any Stream
of stream prog.

language construct

0 EaCh COnStrUCt has s(p"thin """" --....,.E.)arallel computation\
single input/output
stream —{_splitter joiner }H>
= Hierarchical \)
structure feedback loop
4 N\
= Filters can be -1+ Uoiner () —{spiitter }4~
stateful/stateless . O— |

8

‘ Research Question: How to Eliminate
Bottlenecks (Hot Actors) from Stream

‘ Mapping Actors

>

o €

\ Core 1 Core 2 Core 3
A 5

60
/B/TO//9 c | 60
///
60 D 5
T =10s T =60s T =60s
5

Make span = 60s, Speedup = 130/60 = 2.17

10

Bottleneck Actors Limit the Performance

AlS Core 1 Core 2 Core 3
)
o L2 A |5 B2)20 (B3 20
! s1 | 2 i 2 C_3] 20
Al s B_11 20 |B_2] 20 |B_3| 20
I B.1] 2 s2 | 2 D |5
B | 60 { c2J 20
\: s2 2 C_1 20) 2
c | 60 ! J
20 Cf 20 (¢23) 20 T=47s T = 46s T = 45s
D 5 .
j2 5 Make span = 47s, Speedup = 130/47 = 2.77
)
D|5

Hot actor duplication

11

Bottleneck Resolving of Stream Program

Contd.

Current state of the art

o Integer Linear Programming
Intractable

How to find a fast and good solution?
o Heuristics
o Optimal

12

Our Work

A data rate transfer model to detect and
eliminate bottlenecks

We separate the bottleneck elimination from
the actor allocation

Heuristics to solve bottleneck problem
efficiently

13

Our Data Transfer Model

Throughput depends on the data rate of the
actors (maximize)

Data transfer model forms a system of sim.
functional linear equation

Compute a closed form of the output data rate

We also consider a processor utilization
function for each actor

1 5 1 1
» B > C

yA i A

X,=z x,=02x, X=X

! / /

14

Bottleneck Analysis

The throughput is limited by

o Processor capacity of the cores

o Memory bandwidth

A quantitative analysis determines

2 An upper bound of the throughput imposed by an
actor

o An upper bound of the throughput imposed by the
parallel system

Hot actor
o Upper bound (actor) < upper bound (system)

15

Hot Region

Maximal connected subgraph
h=W',E') where V'CV.,E'CE
and each i€V’ is hot and
stateless

@ e N | M & O j& O & W |j& >

16

‘ Resolving Bottleneck Options

60

60

B 1

C_1

A 5
!
s1 2
!
20 B 2| 20
¥
i1
|
s2
!
20 C2) 20
¥
j2
2
{
D 5

Hot actor duplication

B 3

C.3

20

20

B_1

A | S
)
s1 2
!

20 B 2| 20

20 C2]20

5

B_3

20

C_3

Hot region duplication

20

Region Duplication further Increases

Performance
A 5
!
s1 2 Core 1 Core 2 Core 3
] A |5 s1 | 2 B3| 20
20 B 2| 20 B_3 | 20
B 1| 20 B2 | 20 C3]| 20
Mapping
C_ 1] 20 C2| 20 D 5
20 C2)20 C3]| 20
¥ o2
i1
Jl 2
T =455 T = 44s T = 45s
D 5

Make span = 45s, Speedup = 130/45 = 2.89

18

Cascading Etfect of Duplication

= Actors may become hot due to duplication of
other actors

_—

A
)
s1
!
B_

B_1

2

S

B_3

A

Mid ojldold old >

C

CJ\‘

'

1

—

=)

2
A 2
E

C_3

=

Duplication Factor of an Actor and a Hot

Region
The # of times the actor needs
to be duplicated d; > 1

Maximum duplication factor of
the actors of the hot region

@ e N j&e= M & O j& O & W |j& >

d, =2

20

Heuristics to Resolve Bottlenecks

Optimal solution?

Experiment

Determine hot regions

Determine duplication
factors of hot regions

Duplicate hot regions

21

Summary

A simple quantitative analysis to detect and

eliminate bottlenecks

We separate the bottleneck elimination from

the actor allocation

Heuristics to eliminate bottlenecks

22

Related Works

Static Scheduling of SDF Programs for DSP [Lee ‘87]

Streamlt: A language for streaming applications [Thies ‘02]

Phased Scheduling of Stream Programs [Thies '03]

Exploiting Coarse Grained Task, Data, and Pipeline Parallelism in

Stream Programs [Thies ‘06]

[5] Orchestrating the Execution of Stream Programs on Cell [Scott "08]

[6] Software Pipelined Execution of Stream Programs on GPUs
[Udupa'09]

[7] Synergistic Execution of Stream Programs on Multicores with

Accelerators [Udupa ‘09]

BN =

23

(Questions?

