
Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Detecting Buffer Overflow for C like languages
using CLP

School of IT, University of Sydney

19th November 2010

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Engineering Software

It takes genius to write software

The quality of software products is

.......average to poor

Economic benefits of computerization are immense

If Sydney Harbour bridge were to be made by Software
engineers

We would somehow scramble and get a hanging bridge

then, we will test to see if it can take the load

pass one truck on the bridge ... hurray..... the bridge did not
collapse

pass the second truck...wait....

...one of the support beam has bent, quick, get someone to
reinforce it

Software engineers lack proper tools for their trade

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Engineering Software

It takes genius to write software

The quality of software products is

.......average to poor

Economic benefits of computerization are immense

If Sydney Harbour bridge were to be made by Software
engineers

We would somehow scramble and get a hanging bridge

then, we will test to see if it can take the load

pass one truck on the bridge ... hurray..... the bridge did not
collapse

pass the second truck...wait....

...one of the support beam has bent, quick, get someone to
reinforce it

Software engineers lack proper tools for their trade

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Engineering Software

It takes genius to write software

The quality of software products is

.......average to poor

Economic benefits of computerization are immense

If Sydney Harbour bridge were to be made by Software
engineers

We would somehow scramble and get a hanging bridge

then, we will test to see if it can take the load

pass one truck on the bridge ... hurray..... the bridge did not
collapse

pass the second truck...wait....

...one of the support beam has bent, quick, get someone to
reinforce it

Software engineers lack proper tools for their trade

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Engineering Software

It takes genius to write software

The quality of software products is

.......average to poor

Economic benefits of computerization are immense

If Sydney Harbour bridge were to be made by Software
engineers

We would somehow scramble and get a hanging bridge

then, we will test to see if it can take the load

pass one truck on the bridge ... hurray..... the bridge did not
collapse

pass the second truck...wait....

...one of the support beam has bent, quick, get someone to
reinforce it

Software engineers lack proper tools for their trade

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Engineering Software

It takes genius to write software

The quality of software products is

.......average to poor

Economic benefits of computerization are immense

If Sydney Harbour bridge were to be made by Software
engineers

We would somehow scramble and get a hanging bridge

then, we will test to see if it can take the load

pass one truck on the bridge ... hurray..... the bridge did not
collapse

pass the second truck...wait....

...one of the support beam has bent, quick, get someone to
reinforce it

Software engineers lack proper tools for their trade

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Engineering Software

It takes genius to write software

The quality of software products is

.......average to poor

Economic benefits of computerization are immense

If Sydney Harbour bridge were to be made by Software
engineers

We would somehow scramble and get a hanging bridge

then, we will test to see if it can take the load

pass one truck on the bridge ... hurray..... the bridge did not
collapse

pass the second truck...wait....

...one of the support beam has bent, quick, get someone to
reinforce it

Software engineers lack proper tools for their trade

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Engineering Software

It takes genius to write software

The quality of software products is

.......average to poor

Economic benefits of computerization are immense

If Sydney Harbour bridge were to be made by Software
engineers

We would somehow scramble and get a hanging bridge

then, we will test to see if it can take the load

pass one truck on the bridge ... hurray..... the bridge did not
collapse

pass the second truck...wait....

...one of the support beam has bent, quick, get someone to
reinforce it

Software engineers lack proper tools for their trade

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Engineering Software

It takes genius to write software

The quality of software products is

.......average to poor

Economic benefits of computerization are immense

If Sydney Harbour bridge were to be made by Software
engineers

We would somehow scramble and get a hanging bridge

then, we will test to see if it can take the load

pass one truck on the bridge ... hurray..... the bridge did not
collapse

pass the second truck...wait....

...one of the support beam has bent, quick, get someone to
reinforce it

Software engineers lack proper tools for their trade

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Engineering Software

It takes genius to write software

The quality of software products is

.......average to poor

Economic benefits of computerization are immense

If Sydney Harbour bridge were to be made by Software
engineers

We would somehow scramble and get a hanging bridge

then, we will test to see if it can take the load

pass one truck on the bridge ... hurray..... the bridge did not
collapse

pass the second truck...wait....

...one of the support beam has bent, quick, get someone to
reinforce it

Software engineers lack proper tools for their trade

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Engineering Software

It takes genius to write software

The quality of software products is

.......average to poor

Economic benefits of computerization are immense

If Sydney Harbour bridge were to be made by Software
engineers

We would somehow scramble and get a hanging bridge

then, we will test to see if it can take the load

pass one truck on the bridge ... hurray..... the bridge did not
collapse

pass the second truck...wait....

...one of the support beam has bent, quick, get someone to
reinforce it

Software engineers lack proper tools for their trade

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Engineering Software

It takes genius to write software

The quality of software products is

.......average to poor

Economic benefits of computerization are immense

If Sydney Harbour bridge were to be made by Software
engineers

We would somehow scramble and get a hanging bridge

then, we will test to see if it can take the load

pass one truck on the bridge ... hurray..... the bridge did not
collapse

pass the second truck...wait....

...one of the support beam has bent, quick, get someone to
reinforce it

Software engineers lack proper tools for their trade

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Motivation: Parfait Static Analysis Tool

Motivated by Parfait, a research project at Oracle Sun Labs

Layered analyses in time-complexity order

Passes potential bugs to next layer which is slower but more
precise

Ends with fewer false positives

Static bug checking framework designed for scalability and
precision

Analyses the OpenSolaris with several million lines of code in
less than 30 minutes

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Our technique

Demand driven

Applicable to any program property expressed as a program
invariant

Uses standard logic program solvers

Suitable as final layer in tools like Parfait

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Our Technique

DFL Program

Instrumentation and Slicing

NDL Program

Logic Program

Program Solver

Program Invariant

Invariant Proof

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Deterministic Flow Graph (DFL)

s1

s2

s3

s4

s5

s6

s7

s8

i = 0

j = 0

i < 100
i = i + 1

j = j + 1

A[i] = j

i ≥ 100

print A

Nodes are program point

s1 is start node

s8 is exit node

Edges are statements

Edge u with program state �
transforms it to state �′ and
passes control to next node u′

Semantics are defined by state
transition function
(u, �)→ (u′, �′)

A well formed, directed,
reachable graph

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Non-Deterministic Language

Process several program states simultaneously

Program state is not a unique state but a set of states.

assign statement changes the set of program states

choose(Stmt1, Stmt2) produces two output program states for
each input state

repeat(Stmt) produces infinite program states for each input
state

repeat(Stmt) = choose(Stmt0,Stmt1,Stmt2, . . .)

choose and repeat increase program states

assume(Expr) prunes program states by filtering them

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Program Instrumentation

s1

s2

s3

s4

s5

s6

s7

s8

i = 0

j = 0

i < 100
i = i + 1

j = j + 1

A[i] = j

i ≥ 100

print A

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

flag = 0

i = 0

j = 0

i < 100
i = i + 1

j = j + 1

flag = flag+
¬(0 ≤ i ≤ 99)

A[i] = j

i ≥ 100

print A

A new variable
called flag

Initially set to zero,
indicating property
not been identified
yet

Add a non-zero
value if property
violated

Value of flag at
program end proves
buffer overflow
property

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Program Slicing

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

flag = 0

i = 0

j = 0

i < 100
i = i + 1

j = j + 1

flag = flag+
¬(0 ≤ i ≤ 99)

A[i] = j

i ≥ 100

print A

s1

s2

s3

s4

s5

flag = 0

i = 0

i < 100
i = i + 1

flag = flag+
¬(0 ≤ i ≤ 99)

Program slicing for
variable flag at node s3

Only those statements
that affect value of flag
at node s3 are retained

All other statements are
removed from the
program to obtain
program slice

Slice is smaller but
computes same value of
flag as the original
program

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Translation to NDL

With the means of Kildall’s monotone dataflow framework and

Tarjan’s path homomorphism

Imperative programs represented as a flow graph

A regular expression over graph edges and

syntactic level rewrite rules

translate it to non-deterministic language

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Regular Path Expression

s1

s2

s3

s4

s5

flag = 0

i = 0

i < 100
i = i + 1

flag = flag+
¬(0 ≤ i ≤ 99)

Paths from start node s1 to node s3

(s1, s2).(s2, s3)

(s1, s2).(s2, s3).(s3, s4).(s4, s5).(s5, s3)

(s1, s2).(s2, s3).(s3, s4).(s4, s5).(s5, s3).(s3, s4)
.(s4, s5).(s5, s3)

Infinite number of paths denoted by Paths(s1, s3)

Can be represented by a Regular expression over edges

Paths(s1, s3) is
(s1, s2).(s2, s3). [(s3, s4).(s4, s5).(s5, s3)]∗

Path expression is used to do translation to NDL

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Translation scheme DFL to NDL

Regular expression consists of alphabets (edges), +, . and ∗
operators

Regular expression is rewritten using following rules to create
NDL program

K (�) = skip
K (e) = assume(bp(e)); eff(e)
K (p1 + p2) = choose(K (p1),K (p2))
K (p1 ⋅ p2) = K (p1); K (p2)
K (p∗) = repeat(K (p))

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Example

s1

s2

s3

s4

s5

flag = 0

i = 0

i < 100
i = i + 1

flag = flag + ¬(0 ≤ i ≤ 99)

Paths(s1, s3) is
(s1, s2).(s2, s3). [(s3, s4).(s4, s5).(s5, s3)]∗

flag :=0;
i :=0;
repeat(

assume(i < 100);
i := i + 1;
choose(
assume(¬0 ≤ i ≤ 99);skip,
assume(0 ≤ i ≤ 99);flag :=flag+1
)

assume (flag <> 0)

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Translation Rules NDL to Prolog

Each NDL statement is rewritten to Prolog statement using
syntactic rules

Program variables become a set of parameters to Prolog
procedures

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Translation Rules NDL to Prolog

skip
q�(skip)(X̄ , Ȳ):- Y1 is X1, . . . ,Ym is Xm.
assume(Expr)
q�(assume(Expr))(X̄ , Ȳ) :- Y1 is X1, . . . ,Ym is Xm,Expr ∕= 0.
xi :=Expr
q�(xi :=Expr)(X̄ , Ȳ):- Y1 is X1, . . . ,Yi−1 is Xi−1,Yi is Expr ,

Yi+1 is Xi+1, . . . ,Ym is Xm.
Stmt1;Stmt2
q�(Stmt1;Stmt2)(X̄ , Ȳ):- q�(Stmt1)(X̄ , X̄ ′), q�(Stmt2)(X̄ ′, Ȳ).
choose(Stmt1;Stmt2)
q�(choose(Stmt1;Stmt2))(X̄ , Ȳ):- q�(Stmt1)(X̄ , Ȳ).

q�(choose(Stmt1;Stmt2))(X̄ , Ȳ):- q�(Stmt2)(X̄ , Ȳ).
repeat(Stmt)
q�(repeat(Stmt))(X̄ , Ȳ):- q�(Stmt)(X̄ , X̄ ′), q�(repeat(Stmt))(X̄ ′, Ȳ).

q�(repeat(Stmt))(X̄ , Ȳ):- Y1 is X1, . . . ,Ym is Xm.

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Example

flag :=0;
i :=0;
repeat(

assume(i < 100);
i := i + 1;
choose(
assume(¬0 ≤ i ≤ 99);
skip,
assume(0 ≤ i ≤ 99);
flag :=flag+1
)

assume (flag <> 0)

q(I,FLAG,IO,FLAGO) :- FLAG1 is 0,I1=0,

q1(I1,FLAG1,I2,FLAG2), (FLAG2=0),

IO is I2,FLAGO is FLAG2.

q1(I,FLAG,IO,FLAGO) :- q2(I,FLAG,I1,FLAG1),

q1(I1,FLAG1,IO,FLAGO).

q1(I,FLAG,IO,FLAGO) :- IO is I,FLAGO is FLAG.

q2(I,FLAG,IO,FLAGO) :- (I < 100),I1 is I+1,

q3(I1,FLAG,I2,FLAG1),IO is I2,FLAGO is FLAG1.

q3(I,FLAG,IO,FLAGO) :- q4(I,FLAG,IO,FLAGO).

q3(I,FLAG,IO,FLAGO) :- q5(I,FLAG,IO,FLAGO).

q4(I,FLAG,IO,FLAGO) :- (0=<I,I=<99),

IO is I,FLAGO is FLAG1.

q5(I,FLAG,IO,FLAGO) :-(not(0<I);(not(I=<99))),

FLAG1=FLAG+1,IO is I,FLAGO is FLAG1.

? q(I,FLAG,IO,FLAG).

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Prolog Solution

Solve the Prolog program using a standard logic solver

For our example program, i = 0 is a solution

This proves that if C program is executed with input value of
i = 0

The program will have a buffer overflow error

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Summary

Convert the program flow chart to a flow graph language
(DFL)

Represent program properties (like buffer overflow) as
program invariants

Instrument and slice the DFL program

Rewrite DFL graph as an NDL program

Rewrite NDL program as a Prolog program

Solve Prolog program using standard logic solvers

A solution disproves the Program property

Works over finite domains

Slower than abstract interpretation

Suitable for a layered analysis tool

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

Our Contribution

Semantic preserving translation of a program to

a non-deterministic language
to a logic program.

Program invariant property as a solution to the logic program.

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

Introduction Our Technique Example Translation to NDL Translation to Prolog Summary

?

School of IT, University of Sydney

Detecting Buffer Overflow for C like languages using CLP

	Introduction
	Introduction to Buffer Overflow
	Motivation

	Our Technique
	Example
	Instrumentation with Program Invariant

	Translation to NDL
	Translation to Prolog
	Summary

