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Types and type Systems

A type is a formal description of the behavior of a program
fragment. For example:

plus : Int→ Int→ Int

map : (a→ b)→ List a→ List b

select : (all a.a → List b) → c → List b

The Damas-Milner type system [Milner, 1978] offers a restricted
form of polymorphism and is at the heart of Standard ML and
Objective Caml.
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The Dammas-Milner type system us capable to type functions like
plus and map, but what about the select function?

l e t e x t ( s e l e c t : ( a l l a . a −> L i s t b ) −> c −> L i s t b ) =
fun f −>
| z y −> append ( f ( z y ) ) ( append ( s e l e c t f z ) ( s e l e c t f y ) )
| y −> f y
; ;

It is necessary to have:

Local quantification and type application

Type matching for the function of type ∀a.a→ List b
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System FM

System FM extends system F with type matching.

t ::= (term)
xT (variable)
t t (application)
λxT .t (abstraction)
t T (type application)
[∆]T → t (typecase)

T ::= (type)
X (variable)
T → T function)
∀T [∆].T (typecase)

Let ∆ be a type context and let P and U be types. There is a match of P

against U with respect to ∆ iff {U/[∆] P} is some substitution in which case

is their most general (Jay; 2009).
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Type unification

Type unification for system FM is simple:
{X = X} = {}
{S = X} = {S/X}if X /∈ FV (S)
{X = T} = {T/X} if X /∈ FV (T )
{P → S = Q→ T} = let υ1 = {P = Q} in

let υ2 = {υ1S = υ2T} in
υ2 ◦ υ1

{∀P [∆].S = ∀Q[∆].} = let υ1 = {P = Q} in
let υ2 = {υ1S = υ2T} in
υ2 ◦ υ1 if this avoids ∆

{S = T} = undefined otherwise
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Full type inference for System F is undecidable (Wells; 1999).
In order to support first class polymorphism bondi relies on
provided type annotations to correctly type functions with
polymorphic type arguments.

It is also desirable to have an efficient type inference algorithm like
those of the OCaml and Haskell compilers.
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So far we have a specification of the problem, it remains to:

Provide the proofs for type unification(in progress) and type
matching.

Define and implement type unification with constraints.

Deal with type annotations when performing type inference
with constraints on path polymorphic queries.

What to do?
As a first step, lets learn how to do type inference with constraints
to support the Dammas-Milner type system.
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Typing rules for DM

t ::= x | t t | λx.t | let x = t1 in t2
T ::= X | T → T | G
σ ::= ∀X̄.T

Γ(x) = S

Γ ` x : S
(V ar)

Γ ` t1 : U Γ;x : U ` t2 : S

let x = t1 in t2 : S
(Let)

Γ;x : U ` t : S

Γ ` λx.t : U → S
(Abs)

Γ ` t : T
Γ ` t : ∀X.T

X 6∈ ftv(Γ)(Gen)

Γ ` t1 : U → S Γ ` t2 : U

Γ ` t1 t2 : S
(App)

Γ ` t : ∀X.T
Γ ` t : [X 7→ U ]T

(Inst)
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Algorithm W

W :: TypeEnv x Expression → Substitution x Type

W (Γ, x) = ([ ], instantiate(τ)), where(x : τ) ∈ Γ

W (Γ, λx→ e) = let(σ1, τ1) = W (Γ\x ∪ {x : β}, e), freshβ
in (σ1, σ1β → τ1)

W (Γ, e1 e2) = let (σ1, τ1) = W (Γ, e1)
in (σ2, τ2) = W (S1Γ, e2)
σ3 = mgu(σ2τ1, τ2 → β), freshβ
in (σ3 ◦ σ2 ◦ σ1, σ3β)

W (Γ, let x = e1 in e2) = let (σ1, τ1) = W (Γ, e1)
in (σ2, τ2) = W (σ1Γ/x ∪ {x : generalize(σ1Γ, τ1)}, e2)
in(σ2 ◦ σ1, τ2)
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Constraints

A constraint is a condition that a solution to an optimization
problem must satisfy. A simple example of a constraint problem is:
At any junction point in an electric circuit, the total electric
current into the junction is equal to the total electric current out.

Wikipedia (2010).
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Defining constraints for the DM type system

Algorithm W work with substitutions that are an approximation to
solved forms of unification constraints. Working with constraints
means using equations, conjunction and existential quantification
(Pottier and Rémy; 2005).

A type is either a type variable X or an arity-consistent application
of a type constructor F . The type constructors are: unit, ×,
+,→, etc...)

Ground types contain no variables. The base case in this definition
is when F has arity zero.
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Definition of constraints

T ::= X | F ~T

C ::= T = T | C ∧ C | ∃X.C
| x � T
| ς � T
| def x = ς in C

ς ::= ∀X̄[C].T

def x : ς in C ≡ [x 7→ ς] in C
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Constraint interpretation

ψx � φT

φ, ψ ` x � T
(φψ)ς � φT

φ, ψ ` ς � T
φ, ψ [x 7→ (φψ)ς] ` C
φ,ψ ` def x : ς in C

x � T and ς � T are instantiation constraints interpreted
as set membership.

A type variable X denotes a ground type.

A variable x denotes a set of ground types.

A valuation φ maps a type variables to a ground type.

A valuation ψ maps a term variable to a set of ground types.
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Constraint Generation

Jx : T K = x � T

Jλx.t : T K = ∃X1X2(def x : X1 in Jt : X2K ∧X1 → X2 = T
ifX1, X2 /∈ t, T

Jt1 t2K = ∃X.(Jt1 : X → T K ∧ Jt2 : XK)
ifX /∈ t1, t2, T

Jlet x = t1 in t2 : T K = let x : Lt1M in Jt2 : T K

LtM = ∀[Jt : XK].X

Because constraint generation is now a mapping of an expression t
and a type T to a constraint Jx : T K . There is no need for the
parameter Γ
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Example

let t stand for the term λx.x : T , such that the typing of t is
correct.

Constraint generation:

Jλx.x : T K = ∃X1X2(def x : X1 in Jx : X2K ∧X1 → X2 = T )
Jλx.x : T K = ∃X1X2(def x : X1 in x � X2 ∧X1 → X2 = T )

Constraint solving:

Jλx.x : T K = ∃X1X2(def x : X1 in x � X2 ∧X1 → X2 = T )
Jλx.x : T K = ∃X1X2(X1 � X2 ∧X1 → X2 = T )
Jλx.x : T K = ∃X1X2(X1 = X2 ∧X1 → X2 = T )
Jλx.x : T K = ∃X1X2(X1 → X1 = T )
Jλx.x : T K = (X1 → X1 = T )

if X1 /∈ t, T
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