
A motivating problem bondi and system FM Constraints Type inference with constraints References

Type inference with constraints

Jose Vergara

University of Technology Sydney

Sydney Area Programming Languages INterest Group 2010

Jose Vergara University of Technology Sydney

Type inference with constraints

A motivating problem bondi and system FM Constraints Type inference with constraints References

1 A motivating problem

2 bondi and system FM

3 Constraints

4 Type inference with constraints

Jose Vergara University of Technology Sydney

Type inference with constraints

A motivating problem bondi and system FM Constraints Type inference with constraints References

Types and type Systems

A type is a formal description of the behavior of a program
fragment. For example:

plus : Int→ Int→ Int

map : (a→ b)→ List a→ List b

select : (all a.a → List b) → c → List b

The Damas-Milner type system [Milner, 1978] offers a restricted
form of polymorphism and is at the heart of Standard ML and
Objective Caml.

Jose Vergara University of Technology Sydney

Type inference with constraints

A motivating problem bondi and system FM Constraints Type inference with constraints References

The Dammas-Milner type system us capable to type functions like
plus and map, but what about the select function?

l e t e x t (s e l e c t : (a l l a . a −> L i s t b) −> c −> L i s t b) =
fun f −>
| z y −> append (f (z y)) (append (s e l e c t f z) (s e l e c t f y))
| y −> f y
; ;

It is necessary to have:

Local quantification and type application

Type matching for the function of type ∀a.a→ List b

Jose Vergara University of Technology Sydney

Type inference with constraints

A motivating problem bondi and system FM Constraints Type inference with constraints References

System FM

System FM extends system F with type matching.

t ::= (term)
xT (variable)
t t (application)
λxT .t (abstraction)
t T (type application)
[∆]T → t (typecase)

T ::= (type)
X (variable)
T → T function)
∀T [∆].T (typecase)

Let ∆ be a type context and let P and U be types. There is a match of P

against U with respect to ∆ iff {U/[∆] P} is some substitution in which case

is their most general (Jay; 2009).

Jose Vergara University of Technology Sydney

Type inference with constraints

A motivating problem bondi and system FM Constraints Type inference with constraints References

Type unification

Type unification for system FM is simple:
{X = X} = {}
{S = X} = {S/X}if X /∈ FV (S)
{X = T} = {T/X} if X /∈ FV (T)
{P → S = Q→ T} = let υ1 = {P = Q} in

let υ2 = {υ1S = υ2T} in
υ2 ◦ υ1

{∀P [∆].S = ∀Q[∆].} = let υ1 = {P = Q} in
let υ2 = {υ1S = υ2T} in
υ2 ◦ υ1 if this avoids ∆

{S = T} = undefined otherwise

Jose Vergara University of Technology Sydney

Type inference with constraints

A motivating problem bondi and system FM Constraints Type inference with constraints References

Full type inference for System F is undecidable (Wells; 1999).
In order to support first class polymorphism bondi relies on
provided type annotations to correctly type functions with
polymorphic type arguments.

It is also desirable to have an efficient type inference algorithm like
those of the OCaml and Haskell compilers.

Jose Vergara University of Technology Sydney

Type inference with constraints

A motivating problem bondi and system FM Constraints Type inference with constraints References

So far we have a specification of the problem, it remains to:

Provide the proofs for type unification(in progress) and type
matching.

Define and implement type unification with constraints.

Deal with type annotations when performing type inference
with constraints on path polymorphic queries.

What to do?
As a first step, lets learn how to do type inference with constraints
to support the Dammas-Milner type system.

Jose Vergara University of Technology Sydney

Type inference with constraints

A motivating problem bondi and system FM Constraints Type inference with constraints References

Typing rules for DM

t ::= x | t t | λx.t | let x = t1 in t2
T ::= X | T → T | G
σ ::= ∀X̄.T

Γ(x) = S

Γ ` x : S
(V ar)

Γ ` t1 : U Γ;x : U ` t2 : S

let x = t1 in t2 : S
(Let)

Γ;x : U ` t : S

Γ ` λx.t : U → S
(Abs)

Γ ` t : T
Γ ` t : ∀X.T

X 6∈ ftv(Γ)(Gen)

Γ ` t1 : U → S Γ ` t2 : U

Γ ` t1 t2 : S
(App)

Γ ` t : ∀X.T
Γ ` t : [X 7→ U]T

(Inst)

Jose Vergara University of Technology Sydney

Type inference with constraints

A motivating problem bondi and system FM Constraints Type inference with constraints References

Algorithm W

W :: TypeEnv x Expression → Substitution x Type

W (Γ, x) = ([], instantiate(τ)), where(x : τ) ∈ Γ

W (Γ, λx→ e) = let(σ1, τ1) = W (Γ\x ∪ {x : β}, e), freshβ
in (σ1, σ1β → τ1)

W (Γ, e1 e2) = let (σ1, τ1) = W (Γ, e1)
in (σ2, τ2) = W (S1Γ, e2)
σ3 = mgu(σ2τ1, τ2 → β), freshβ
in (σ3 ◦ σ2 ◦ σ1, σ3β)

W (Γ, let x = e1 in e2) = let (σ1, τ1) = W (Γ, e1)
in (σ2, τ2) = W (σ1Γ/x ∪ {x : generalize(σ1Γ, τ1)}, e2)
in(σ2 ◦ σ1, τ2)

Jose Vergara University of Technology Sydney

Type inference with constraints

A motivating problem bondi and system FM Constraints Type inference with constraints References

Constraints

A constraint is a condition that a solution to an optimization
problem must satisfy. A simple example of a constraint problem is:
At any junction point in an electric circuit, the total electric
current into the junction is equal to the total electric current out.

Wikipedia (2010).

Jose Vergara University of Technology Sydney

Type inference with constraints

A motivating problem bondi and system FM Constraints Type inference with constraints References

Defining constraints for the DM type system

Algorithm W work with substitutions that are an approximation to
solved forms of unification constraints. Working with constraints
means using equations, conjunction and existential quantification
(Pottier and Rémy; 2005).

A type is either a type variable X or an arity-consistent application
of a type constructor F . The type constructors are: unit, ×,
+,→, etc...)

Ground types contain no variables. The base case in this definition
is when F has arity zero.

Jose Vergara University of Technology Sydney

Type inference with constraints

A motivating problem bondi and system FM Constraints Type inference with constraints References

Definition of constraints

T ::= X | F ~T

C ::= T = T | C ∧ C | ∃X.C
| x � T
| ς � T
| def x = ς in C

ς ::= ∀X̄[C].T

def x : ς in C ≡ [x 7→ ς] in C

Jose Vergara University of Technology Sydney

Type inference with constraints

A motivating problem bondi and system FM Constraints Type inference with constraints References

Constraint interpretation

ψx � φT

φ, ψ ` x � T
(φψ)ς � φT

φ, ψ ` ς � T
φ, ψ [x 7→ (φψ)ς] ` C
φ,ψ ` def x : ς in C

x � T and ς � T are instantiation constraints interpreted
as set membership.

A type variable X denotes a ground type.

A variable x denotes a set of ground types.

A valuation φ maps a type variables to a ground type.

A valuation ψ maps a term variable to a set of ground types.

Jose Vergara University of Technology Sydney

Type inference with constraints

A motivating problem bondi and system FM Constraints Type inference with constraints References

Constraint Generation

Jx : T K = x � T

Jλx.t : T K = ∃X1X2(def x : X1 in Jt : X2K ∧X1 → X2 = T
ifX1, X2 /∈ t, T

Jt1 t2K = ∃X.(Jt1 : X → T K ∧ Jt2 : XK)
ifX /∈ t1, t2, T

Jlet x = t1 in t2 : T K = let x : Lt1M in Jt2 : T K

LtM = ∀[Jt : XK].X

Because constraint generation is now a mapping of an expression t
and a type T to a constraint Jx : T K . There is no need for the
parameter Γ

Jose Vergara University of Technology Sydney

Type inference with constraints

A motivating problem bondi and system FM Constraints Type inference with constraints References

Example

let t stand for the term λx.x : T , such that the typing of t is
correct.

Constraint generation:

Jλx.x : T K = ∃X1X2(def x : X1 in Jx : X2K ∧X1 → X2 = T)
Jλx.x : T K = ∃X1X2(def x : X1 in x � X2 ∧X1 → X2 = T)

Constraint solving:

Jλx.x : T K = ∃X1X2(def x : X1 in x � X2 ∧X1 → X2 = T)
Jλx.x : T K = ∃X1X2(X1 � X2 ∧X1 → X2 = T)
Jλx.x : T K = ∃X1X2(X1 = X2 ∧X1 → X2 = T)
Jλx.x : T K = ∃X1X2(X1 → X1 = T)
Jλx.x : T K = (X1 → X1 = T)

if X1 /∈ t, T

Jose Vergara University of Technology Sydney

Type inference with constraints

A motivating problem bondi and system FM Constraints Type inference with constraints References

Jay, B. (2009). Pattern calculus: computing with functions and
structures, Springer Verlag.

Pottier, F. and Rémy, D. (2005). The essence of ML type
inference.

Wells, J. (1999). Typability and type checking in System F are
equivalent and undecidable* 1, Annals of Pure and Applied
Logic 98(1-3): 111–156.

Wikipedia (2010). Constraint (mathematics) — wikipedia, the free
encyclopedia. [Online; accessed 19-October-2010].
URL: http: // en. wikipedia. org/ w/ index. php? title=
Constraint_ (mathematics) &oldid= 382532950

Jose Vergara University of Technology Sydney

Type inference with constraints

http://en.wikipedia.org/w/index.php?title=Constraint_(mathematics)&oldid=382532950
http://en.wikipedia.org/w/index.php?title=Constraint_(mathematics)&oldid=382532950

	A motivating problem
	bondi and system FM
	Constraints
	Type inference with constraints
	References

