Typed Boa Calculus

Barry Jay'*

Centre for Quantum Computing and Intelligent Systems, School of Software,
University of Technology, Sydney Barry.JayQuts.edu.au

Queries such as select are the mainstay of database programming languages
such as SQL where they are typically applied to tables of records. Generic queries
apply to a wider class of data structures, such as pairs, list and trees. Various
mechanisms have been developed to support such generality, such as Scrap-Your-
Boilerplate, Stratego, pattern calculus and factorisation calculus. The latter two
are relatively general and powerful because they employ a strongly-typed, con-
fluent rewriting system. The boa-calculus (Joint with Jose Vergara) builds on
the factorization calculus to support generic queries which can act on lambda
abstractions. That is, it supports both the beta-reduction of lambda calculus
and the reduction of combinators.

The main challenge is to type the intensional operators F' (for factorisation)
and E (for equality). The type of F has been presented elsewhere, namely

F.VvXVWX—>Y—>NVZ(Z—-X)—>Z—->Y)>Y.
The type of FE improves on earlier work with Jens Palsberg to be
E:VX°VYVZX° =Y > [X°<Y|Z—>Z—> 7

where X° is an operator type variable and [X° < Y|Z is a constrained type. The
operator type variables represent operator types. The use of X° above ensures
that if it becomes the type of some operator O then it becomes Ty[O]. Thus,
instantiating X° and Y and Z yields a type of the form

E:Ty[0] U - [yO]<U|IT -T —-1T.

The main technical challenge is to control the use of the type constraints Ty[O] <
U. The talk will present the latest version of this developing type system.



