
Typed Boa Calculus

Barry Jay1*

Centre for Quantum Computing and Intelligent Systems, School of Software,
University of Technology, Sydney Barry.Jay@uts.edu.au

Queries such as select are the mainstay of database programming languages
such as SQL where they are typically applied to tables of records. Generic queries
apply to a wider class of data structures, such as pairs, list and trees. Various
mechanisms have been developed to support such generality, such as Scrap-Your-
Boilerplate, Stratego, pattern calculus and factorisation calculus. The latter two
are relatively general and powerful because they employ a strongly-typed, con-
fluent rewriting system. The boa-calculus (Joint with Jose Vergara) builds on
the factorization calculus to support generic queries which can act on lambda
abstractions. That is, it supports both the beta-reduction of lambda calculus
and the reduction of combinators.

The main challenge is to type the intensional operators F (for factorisation)
and E (for equality). The type of F has been presented elsewhere, namely

F : ∀X.∀Y.X → Y → (∀Z.(Z → X)→ Z → Y )→ Y .

The type of E improves on earlier work with Jens Palsberg to be

E : ∀X◦.∀Y.∀Z.X◦ → Y → [X◦ ≺ Y ]Z → Z → Z

where X◦ is an operator type variable and [X◦ ≺ Y ]Z is a constrained type. The
operator type variables represent operator types. The use of X◦ above ensures
that if it becomes the type of some operator O then it becomes Ty[O]. Thus,
instantiating X◦ and Y and Z yields a type of the form

E : Ty[O]→ U → [Ty[O] ≺ U ]T → T → T .

The main technical challenge is to control the use of the type constraints Ty[O] ≺
U . The talk will present the latest version of this developing type system.


