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Queries such as select are the mainstay of database programming languages
such as SQL where they are typically applied to tables of records. Generic queries
apply to a wider class of data structures, such as pairs, list and trees. Various
mechanisms have been developed to support such generality, such as Scrap-Your-
Boilerplate, Stratego, pattern calculus and factorisation calculus. The latter two
are relatively general and powerful because they employ a strongly-typed, con-
fluent rewriting system. The boa-calculus (Joint with Jose Vergara) builds on
the factorization calculus to support generic queries which can act on lambda
abstractions. That is, it supports both the beta-reduction of lambda calculus
and the reduction of combinators.

The main challenge is to type the intensional operators F' (for factorisation)
and E (for equality). The type of F has been presented elsewhere, namely

F.VvXVWX—>Y—>NVZ(Z—-X)—>Z—->Y)>Y.
The type of FE improves on earlier work with Jens Palsberg to be
E:VX°VYVZX° =Y > [X°<Y|Z—>Z—> 7

where X° is an operator type variable and [X° < Y|Z is a constrained type. The
operator type variables represent operator types. The use of X° above ensures
that if it becomes the type of some operator O then it becomes Ty[O]. Thus,
instantiating X° and Y and Z yields a type of the form

E:Ty[0] U - [yO]<U|IT -T —-1T.

The main technical challenge is to control the use of the type constraints Ty[O] <
U. The talk will present the latest version of this developing type system.



