

Using Managed Runtime Systems to Tolerate Holes in Wearable Memories

Tiejun Gao $^{\alpha\beta}$ Karin Strauss $^{\beta}$ Steve Blackburn $^{\alpha}$ Kathryn McKinley $^{\beta}$ Doug Burger $^{\beta}$ Jim Larus $^{\beta}$

^αAustralian National University ^βMicrosoft Research

OS page-grained protection

Where is Memory Headed?

DRAM is starting to scale poorly

- Scaling results in less charge / cell
 - More susceptible to transient errors
 - Leaks relatively more charge
 - Maintaining state requires higher refresh rate
- More manufacturing failures

Phase change memory (PCM)

- New materials
 - chalcogenide glasses
- Scale better, wear out faster

Write Endurance

Coping with failures today

- OS
 - Failure notification ✓
 - Page granularity

- Hardware correction
 - Cost
 - Diminishing return X

Managed runtimes to the rescue

Opportunity

- Finer granularity of memory management
- Transparent to applications
- Memory safety & abstraction

Faulty pages still usable

System Architecture

- Allocator steps over failures
- OS maintains failure map
- OS notifies the managed runtime of failures
- Plenty of PCM and a small amount of DRAM

What kind of allocator?

Туре	Step over holes	Good Locality
Contiguous Allocation	X	√
Free List	✓	X
Mark Region	√	√

Immix

- Mark-region memory manager
- Best proven performance

Immix

PCM-Immix

Problem solved?

- Better memory efficiency
- Transparent to applications
- Fragmentation

Failure clustering

Methodology

- Jikes RVM 3.1.2 Release
- DaCapo 9.12-bach and DaCapo-2006-10
- Intel Core i7 2600, 4GB, Ubuntu 10.04.1 LTS
- 20 invocations for each benchmark

Results

Results

Summary

- Software/hardware cooperation mitigates failures in wearable memory
 - Immix efficiently skips over failures

Failure clustering hardware reduces fragmentation

- Minimal overhead
 - 4% with 10% failed memory
 - 12% with 50% failed memory

Thank You Q & A

PLDI '13, Seattle, WA, USA, June, 2013
Download

Hardware failure clustering

Owe-page clustering

What if memory is not reliable?

Two-page clustering

OS page-grained protection

Immix

How PCM-Immix works?

Failures are treated as normal objects

Immix

Immix

Where is memory headed?

- DRAM is volatile memory
- Scaling of DRAM to smaller feature sizes is getting more difficult:
 - Less charge stored in DRAM cells
 - More vulnerable to particles hitting and charge leakage
 - Hard to maintain the state
 - Higher refresh rate
 - Stronger error detection mechanism

Hardware error correction

OS page-grained protection

Coping with failures today

⁰¹Inadequate

- OS
 - Failure notification ✓
 - Page granularity

- Hardware correction
 - Cost

- Diminishing return X

Faulty pages still usable

PCM-Immix

System Architecture

- Plenty of PCM and a small amount of DRAM
- OS notifies the managed runtime of failures
- OS holds the failure map
- Allocator steps over failures in the heap according to the failure map

Hardware error correction