ITY OF COPENHAGEN Department of Comput:

Faculty of Science

Distributive Sorting and Searching

From Generic Discrimination to Generic Tries

Fritz Henglein; Ralf Hinze

DIKU, University of Copenhagen; DCS, University of Oxford

2013-12-16

SAPLING 2013
Macquarie University, Australia

UNIVERSITY OF COPENHAGEN Department of Computer Science

Sorting and searching

@ Two principal approaches:

o Comparison-based methods (e.g. Quicksort; red-black trees)
o Distributive methods (e.g. radix sort; tries, hashing)

@ Generic sorting and searching?
o Parameter: User-defined sort order

UNIVERSITY OF COPENHAGEN Department of Computer Science

Comparison-based sorting: Quicksort

gsort :: List String -> List String
gsort [] (]
gsort (x : xs) gsort littles
++ [x]
++ gsort bigs
[a]| a<-xs, a<=
[a | a<-xs, a>

where 1littles
bigs

x]
x]

UNIVERSITY OF COPENHAGEN Department of Computer Science

Generic comparison-based sorting: HOF abstraction

gsortBy :: (k -> k -> Bool) -> List k -> List k
gsortBy (<=) [] = [
gsortBy (<=) (x : xs) gsortBy (<=) littles

++ [x]
++ gsortBy (<=) bigs
where 1littles = [a | a<-xs, a<= x]
bigs = [a | a<-xs, not (a <= x)]

>
[]

UNIVERSITY OF COPENHAGEN Department of Computer Science

Generic comparison-based sorting: Discussion

@ Methods are easily made generic: turn the comparison
function into a parameter (“black-box” approach).

e But:
@ User-specified function may or may not be a comparison
function.

@ Both sorting and searching are subject to lower bounds:

e sorting requires Q(nlog n) comparisons, and
o searching for a key requires Q(log n) comparisons,

where n is the number of keys in the input.

e Often, comparison is not a constant-time operation

Idea: DSL for orders

UNIVERSITY OF COPENHAGEN Department of Computer Science

Order Representations: Definition

@ An element of Order K represents an order over the type K:

data Order :: *x -> where
0Unit ::0rder()
OSum :: Order k1 -> Order k2 -> Order (k1 + k2)
OProd :: Order k1 -> Order k2 -> Order (k1, k2)
OMap :: (k1 -> k2) -> (Order k2 -> Order k1)

OChar :: Order Char -- 7 bit ASCIIdata

UNIVERSITY OF COPENHAGEN Department of Computer Science

Order Representations: Examples

@ Reverse lexicographic order:

rprod :: Order k1 -> Order k2 -> Order (k1, k2)
rprod ol 02 = OMap (fn (a, b) -> (b, a)) (OProd o2 ol)

Ordering recursive types, eg strings:
data String = [] | (Char : String)

ostring :: Order String
ostring = OMap out (0OSum 0OUnit (OProd OChar ostring)))

out :: String -> () + (Char, String)
out [] Inl O
out (a : as) Inr (a, as)

UNIVERSITY OF COPENHAGEN Department of Computer Science

Generic comparison function

@ Interprets an order representation as comparison function:
lte :: Order k -> (k -> k -> Bool)
lte OUnit a b = True
lte (OSum ol 02) a b
case (a, b) of
(Inl al, Inl a2) -> lte ol al a2
(Inl _, Inr) => True
(Inr _, Inl) —> False
(Inr b1, Inr b2) -> 1lte 02 bl b2
lte (OProd ol 02) ab =
lte ol (fst a) (fst b) &&
(1te o1 (fst b) (fst a) ==> 1lte 02 (snd a) (snd b))
lte (OMap g o) a b = 1lte o (g a) (g b)
lte (OChar) a b = a<=b
@ Sorting lists of words:
gsort (lte ostring)

UNIVERSITY OF COPENHAGEN Department of Computer Science

Distributive sorting & searching: Idea

@ Employ the structure of order representations directly.

@ A hierarchy of operations:

sort :: Order k -> List (k,v) -> List v
discr :: Order k —> List (k,v) -> List (List v)
trie :: Order k -> List (k,v) -> Trie k (List v)

o We separate keys from satellite data, i.e. associated values.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Distributive Sorting & Searching: Examples

@ The keys are discarded:
sort ostring [("ab",1), ("ba",2), ("abc",3), ("ba",4)]
= [1,3,2,4]
Note: sort is stable.

@ Returning the keys (sorting as permutation):
sort ostring (map (fn a -> (a, a)) ["ab","ba","abc","ba"])
= ["ab","abc","ba", "ba"]

@ Grouping values with equivalent keys:
discr ostring [("ab",1), ("ba",2), ("abc",3), ("ba",4)]
= [[1],[3],[2,4]]

@ Distributive searching:
let dict =

trie ostring [("ab",1), ("ba",2), ("abc",3), ("ba",4)]

in lookup dict "ba"
— Just [2,4]

10

UNIVERSITY OF COPENHAGEN Department of Computer Science

11

Generic distributive sorting

sort o takes list of key-value pairs, returns values in
non-decreasing order of their associated keys.

sort :: Order k -> List (k,v) -> List v
sort o n = 1
sort OUnit rel = map (fn (k,v) -> v) rel

sort (OSum ol 02) rel =
sort ol (filter froml rel) ++ sort o2 (filter fromr rel)
sort (OProd ol 02) rel =
sort ol (sort o2 (map curryr rel))
sort (OMap g o) rel =
sort o (map (f * id) rel)
sort (OChar) rel = bucketsort rel

Let us look at some clauses.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Distributive sorting: Discussion

@ Each component of each key is touched exactly once.
o lIgnoring OMap.
@ The running time is linear in the total size of the keys.
e sort generalizes least-significant-digit (LSD) radix sort to
user-definable orders on arbitrary data types.

@ sort uses o as a control structure to reduce a sorting problem
to basic sorting on finite domains (bootstrapping).

e Practical performance determined by sorting small integers.

12 .

UNIVERSITY OF COPENHAGEN

Distributive sorting: Properties

@ Naturality, sort o commutes with map:
map f . sort o = sort o . map (id * f)
e Strong naturality, sort o commutes with filtering:
filter p . sort o = sort o . filter (id * p)
@ Sorting singletons
sort o [(k, v)] = [v]
@ Sorting pairs:

sort o [(a,v), (b,w)] = [v,w] <= 1lte o a b = True

Theorem: Strong naturality + sorting singletons + sorting pairs

— stable sort.

Department of Computer Science

UNIVERSITY OF COPENHAGEN Department of Computer Science

Generic Tries: Definition

@ An element of Trie K V represents a finite map from K to V.
Introduce map constructors:

data Trie k v where

TEmpty :: Trie k v —-- empty map

TUnit :: v -> Trie () v -- singleton map

TSum :: Trie k1 -> Trie k2 v -> Trie (k1 + k2) v
TProd :: Trie k1 (Trie k2 v) -> Trie (k1, k2) v
TMap :: (k1 -> k2) -> Trie k2 v -> Trie k1l v
TChar :: Char.Map v -> Trie Char v

@ The first type argument is an index, the second a parameter.

14 ®

UNIVERSITY OF COPENHAGEN Department of Computer Science

15

Building tries in bulk

build :: Order k -> List (k, v) -> Trie k (List v)

build o (] TEmpty

build OUnit rel = TUnit (map val rel)

build (0Sum ol 02) rel = TSum (build ol (filter froml rel))
(build o2 (filter fromr rel))

build (OProd ol o2) rel

TProd (fmap (build 02) (build ol (map curryl rel)))
build (OMap g o) rel = TMap g (build o (map (g * id) rel))
build (OChar) rel = TChar (Char.build rel)

where

curryl ((k1, k2), v) = (k1, (k2, v))

and

fmap :: (v -> w) -> Trie k v -> Trie k w

is morphism mapping component of functor Trie k

UNIVERSITY OF COPENHAGEN

16

Department of Computer Science

Building tries in bulk: Complexity

trie and lookup are asymptotically optimal:

@ trie builds a trie in time /inear in the total size of the keys in

the input.

@ lookup :: Trie k v -> k -> Maybe v returns its result in
time linear in the size of the key input (independent of the trie
input)

o Better yet: In the minimum distinguishing prefix of the key in
the trie.

e (Ignoring OMap)

@ Better than one-at-a-time insertion into trie.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Generic Tries: Properties

o Tries are based on the laws of exponentials (Trie K V= VK):

Vl o~/ vK1+K2 ~ VK1 % VK2 VK1><K2 ~ (VK2)K1

@ Correctness:

discr o = <flatten . trie o

sort o = concat . discr o

where flatten :: Trie k v -> List v flattens a trie into
a list by homomorphically interpreting trie constructors as list
operations.

@ Proofs use strong naturality properties of discr and sort

17

UNIVERSITY OF COPENHAGEN

18

Benchmark: Searching the Bible

@ Preparatory steps (we use Project Gutenberg's The Bible):

bible <- readFile "pg30.txt"
let rel = zip (words bible) [0 ..]
let concordance = build ostring rel

Where is "God"?

lookup concordance "God"

— Just [467,496,506,518,527,536,559,583,610, ...

How frequent is "God"?

fmap length (lookup concordance "God")
— Just 2229

And the "devil"?

fmap length (lookup concordance "devil")

—> Just 23

Department of Computer Science

UNIVERSITY OF COPENHAGEN Department of Computer Science

Benchmark: Performance

Sorting the words of Project Gutenberg's The Bible (5218802
characters, 824337 words).

sortBy compare I| 4.01
sortBy (cmp o) | |5.1
sorto [1234
concat - ranko | 11.16
concat - flatten - trieo |]|1.68
0 1 2 3 4|l 5
time (seconds)

19

UNIVERSITY OF COPENHAGEN Department of Computer Science

Summary

@ Generic distributive sorting and searching
@ Orders are represented syntactically
e Many sort orders per type, not just standard order
@ The separation of keys and values is essential:
sort :: Order k -> List (k, v) -> List v
discr :: Order k —> List (k, v) -> List (List v)
build :: Order k -> List (k, v) -> Trie k (List v)
e Correctness via strong naturality

o Keys are used affinely (used at most once) = linear time
complexity

@ Unoptimized Haskell implementation with surprisingly good
performance

20

UNIVERSITY OF COPENHAGEN

21

Related Work

Cai, J., Paige, R.: Using multiset discrimination to solve language
processing problems without hashing. Theoretical Computer Science
145(1-2) (July 1995) 189-228.

Henglein, F.: Generic discrimination: Sorting and partitioning
unshared data in linear time. In Hook, J., Thiemann, P., eds.: Proc.
13th ACM SIGPLAN Int'l Conf. on Functional Programming
(ICFP), (September 2008) 91-102.

Henglein, F.: Generic top-down discrimination for sorting and
partitioning in linear time. Journal of Functional Programming
22(3) (July 2012) 300-374.

Connelly, R.H., Morris, F.L.. A generalization of the trie data
structure. Mathematical Structures in Computer Science 5(3)
(September 1995) 381-418.

Hinze, R.: Generalizing generalized tries. Journal of Functional
Programming 10(4) (2000) 327-351.

Department of Computer Science

