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Sorting and searching

Two principal approaches:

Comparison-based methods (e.g. Quicksort; red-black trees)
Distributive methods (e.g. radix sort; tries, hashing)

Generic sorting and searching?

Parameter: User-defined sort order
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Comparison-based sorting: Quicksort

qsort :: List String -> List String

qsort [] = []

qsort (x : xs) = qsort littles

++ [x]

++ qsort bigs

where littles = [ a | a <- xs, a <= x ]

bigs = [ a | a <- xs, a > x ]
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Generic comparison-based sorting: HOF abstraction

qsortBy :: (k -> k -> Bool) -> List k -> List k

qsortBy (<=) [] = []

qsortBy (<=) (x : xs) = qsortBy (<=) littles

++ [x]

++ qsortBy (<=) bigs

where littles = [ a | a <- xs, a <= x ]

bigs = [ a | a <- xs, not (a <= x) ]
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Generic comparison-based sorting: Discussion

Methods are easily made generic: turn the comparison
function into a parameter (“black-box” approach).

But:

User-specified function may or may not be a comparison
function.

Both sorting and searching are subject to lower bounds:

sorting requires Ω(n log n) comparisons, and
searching for a key requires Ω(log n) comparisons,

where n is the number of keys in the input.

Often, comparison is not a constant-time operation

Idea: DSL for orders
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Order Representations: Definition

An element of Order K represents an order over the type K:

data Order :: * -> where

OUnit ::Order()

OSum :: Order k1 -> Order k2 -> Order (k1 + k2)

OProd :: Order k1 -> Order k2 -> Order (k1, k2)

OMap :: (k1 -> k2) -> (Order k2 -> Order k1)

OChar :: Order Char -- 7 bit ASCIIdata
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Order Representations: Examples

Reverse lexicographic order:

rprod :: Order k1 -> Order k2 -> Order (k1, k2)

rprod o1 o2 = OMap (fn (a, b) -> (b, a)) (OProd o2 o1)

Ordering recursive types, eg strings:

data String = [] | (Char : String)

ostring :: Order String

ostring = OMap out (OSum OUnit (OProd OChar ostring)))

out :: String -> () + (Char, String)

out [] = Inl ()

out (a : as) = Inr (a, as)
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Generic comparison function
Interprets an order representation as comparison function:

lte :: Order k -> (k -> k -> Bool)

lte OUnit a b = True

lte (OSum o1 o2) a b =

case (a, b) of

(Inl a1, Inl a2 ) -> lte o1 a1 a2

(Inl _, Inr _ ) -> True

(Inr _, Inl _ ) -> False

(Inr b1, Inr b2 ) -> lte o2 b1 b2

lte (OProd o1 o2) a b =

lte o1 (fst a) (fst b) &&

(lte o1 (fst b) (fst a) ==> lte o2 (snd a) (snd b))

lte (OMap g o) a b = lte o (g a) (g b)

lte (OChar) a b = a <= b

Sorting lists of words:

qsort (lte ostring)
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Distributive sorting & searching: Idea

Employ the structure of order representations directly.

A hierarchy of operations:

sort :: Order k -> List (k,v) -> List v

discr :: Order k -> List (k,v) -> List (List v)

trie :: Order k -> List (k,v) -> Trie k (List v)

We separate keys from satellite data, i.e. associated values.
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Distributive Sorting & Searching: Examples
The keys are discarded:

sort ostring [("ab",1), ("ba",2), ("abc",3), ("ba",4)]

=⇒ [1,3,2,4]

Note: sort is stable.
Returning the keys (sorting as permutation):

sort ostring (map (fn a -> (a, a)) ["ab","ba","abc","ba"])

=⇒ ["ab","abc","ba","ba"]

Grouping values with equivalent keys:

discr ostring [("ab",1), ("ba",2), ("abc",3), ("ba",4)]

=⇒ [[1],[3],[2,4]]

Distributive searching:

let dict =

trie ostring [("ab",1), ("ba",2), ("abc",3), ("ba",4)]

in lookup dict "ba"

=⇒ Just [2,4]
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Generic distributive sorting

sort o takes list of key-value pairs, returns values in
non-decreasing order of their associated keys.

sort :: Order k -> List (k,v) -> List v

sort o [] = []

sort OUnit rel = map (fn (k,v) -> v) rel

sort (OSum o1 o2) rel =

sort o1 (filter froml rel) ++ sort o2 (filter fromr rel)

sort (OProd o1 o2) rel =

sort o1 (sort o2 (map curryr rel))

sort (OMap g o) rel =

sort o (map (f * id) rel)

sort (OChar) rel = bucketsort rel

Let us look at some clauses.
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Distributive sorting: Discussion

Each component of each key is touched exactly once.

Ignoring OMap.

The running time is linear in the total size of the keys.

sort generalizes least-significant-digit (LSD) radix sort to
user-definable orders on arbitrary data types.

sort uses o as a control structure to reduce a sorting problem
to basic sorting on finite domains (bootstrapping).

Practical performance determined by sorting small integers.
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Distributive sorting: Properties

Naturality, sort o commutes with map:

map f . sort o = sort o . map (id * f)

Strong naturality, sort o commutes with filtering:

filter p . sort o = sort o . filter (id * p)

Sorting singletons

sort o [(k, v)] = [v]

Sorting pairs:
sort o [(a,v), (b,w)] = [v,w] ⇐⇒ lte o a b = True

Theorem: Strong naturality + sorting singletons + sorting pairs
=⇒ stable sort.
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Generic Tries: Definition

An element of Trie K V represents a finite map from K to V.
Introduce map constructors:

data Trie k v where

TEmpty :: Trie k v -- empty map

TUnit :: v -> Trie () v -- singleton map

TSum :: Trie k1 -> Trie k2 v -> Trie (k1 + k2) v

TProd :: Trie k1 (Trie k2 v) -> Trie (k1, k2) v

TMap :: (k1 -> k2) -> Trie k2 v -> Trie k1 v

TChar :: Char.Map v -> Trie Char v

The first type argument is an index, the second a parameter.
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Building tries in bulk

build :: Order k -> List (k, v) -> Trie k (List v)

build o [] = TEmpty

build OUnit rel = TUnit (map val rel)

build (OSum o1 o2) rel = TSum (build o1 (filter froml rel))

(build o2 (filter fromr rel))

build (OProd o1 o2) rel =

TProd (fmap (build o2) (build o1 (map curryl rel)))

build (OMap g o) rel = TMap g (build o (map (g * id) rel))

build (OChar) rel = TChar (Char.build rel)

where

curryl ((k1, k2), v) = (k1, (k2, v))

and

fmap :: (v -> w) -> Trie k v -> Trie k w

is morphism mapping component of functor Trie k
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Building tries in bulk: Complexity

trie and lookup are asymptotically optimal:

trie builds a trie in time linear in the total size of the keys in
the input.

lookup :: Trie k v -> k -> Maybe v returns its result in
time linear in the size of the key input (independent of the trie
input)

Better yet: In the minimum distinguishing prefix of the key in
the trie.

(Ignoring OMap)

Better than one-at-a-time insertion into trie.
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Generic Tries: Properties

Tries are based on the laws of exponentials (Trie K V ∼= V K ):

V 1 ∼= V V K1+K2 ∼= V K1 × V K2 V K1×K2 ∼= (V K2)K1

Correctness:

discr o = flatten . trie o

sort o = concat . discr o

where flatten :: Trie k v -> List v flattens a trie into
a list by homomorphically interpreting trie constructors as list
operations.

Proofs use strong naturality properties of discr and sort
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Benchmark: Searching the Bible

Preparatory steps (we use Project Gutenberg’s The Bible):

bible <- readFile "pg30.txt"

let rel = zip (words bible) [0 ..]

let concordance = build ostring rel

Where is "God"?

lookup concordance "God"

=⇒ Just [467,496,506,518,527,536,559,583,610,...

How frequent is "God"?

fmap length (lookup concordance "God")

=⇒ Just 2229

And the "devil"?

fmap length (lookup concordance "devil")

=⇒ Just 23
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Benchmark: Performance

Sorting the words of Project Gutenberg’s The Bible (5218802
characters, 824337 words).
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Summary

Generic distributive sorting and searching

Orders are represented syntactically

Many sort orders per type, not just standard order

The separation of keys and values is essential:

sort :: Order k -> List (k, v) -> List v

discr :: Order k -> List (k, v) -> List (List v)

build :: Order k -> List (k, v) -> Trie k (List v)

Correctness via strong naturality
Keys are used affinely (used at most once) =⇒ linear time
complexity

Unoptimized Haskell implementation with surprisingly good
performance
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