
Distributive Sorting and Searching
From Generic Discrimination to Generic Tries

Fritz Henglein; Ralf Hinze

DIKU, University of Copenhagen; DCS, University of Oxford

2013-12-16

SAPLING 2013
Macquarie University, Australia



Sorting and searching

Two principal approaches:

Comparison-based methods (e.g. Quicksort; red-black trees)
Distributive methods (e.g. radix sort; tries, hashing)

Generic sorting and searching?

Parameter: User-defined sort order

2



Comparison-based sorting: Quicksort

qsort :: List String -> List String

qsort [] = []

qsort (x : xs) = qsort littles

++ [x]

++ qsort bigs

where littles = [ a | a <- xs, a <= x ]

bigs = [ a | a <- xs, a > x ]

3



Generic comparison-based sorting: HOF abstraction

qsortBy :: (k -> k -> Bool) -> List k -> List k

qsortBy (<=) [] = []

qsortBy (<=) (x : xs) = qsortBy (<=) littles

++ [x]

++ qsortBy (<=) bigs

where littles = [ a | a <- xs, a <= x ]

bigs = [ a | a <- xs, not (a <= x) ]

4



Generic comparison-based sorting: Discussion

Methods are easily made generic: turn the comparison
function into a parameter (“black-box” approach).

But:

User-specified function may or may not be a comparison
function.

Both sorting and searching are subject to lower bounds:

sorting requires Ω(n log n) comparisons, and
searching for a key requires Ω(log n) comparisons,

where n is the number of keys in the input.

Often, comparison is not a constant-time operation

Idea: DSL for orders

5



Order Representations: Definition

An element of Order K represents an order over the type K:

data Order :: * -> where

OUnit ::Order()

OSum :: Order k1 -> Order k2 -> Order (k1 + k2)

OProd :: Order k1 -> Order k2 -> Order (k1, k2)

OMap :: (k1 -> k2) -> (Order k2 -> Order k1)

OChar :: Order Char -- 7 bit ASCIIdata

6



Order Representations: Examples

Reverse lexicographic order:

rprod :: Order k1 -> Order k2 -> Order (k1, k2)

rprod o1 o2 = OMap (fn (a, b) -> (b, a)) (OProd o2 o1)

Ordering recursive types, eg strings:

data String = [] | (Char : String)

ostring :: Order String

ostring = OMap out (OSum OUnit (OProd OChar ostring)))

out :: String -> () + (Char, String)

out [] = Inl ()

out (a : as) = Inr (a, as)

7



Generic comparison function
Interprets an order representation as comparison function:

lte :: Order k -> (k -> k -> Bool)

lte OUnit a b = True

lte (OSum o1 o2) a b =

case (a, b) of

(Inl a1, Inl a2 ) -> lte o1 a1 a2

(Inl _, Inr _ ) -> True

(Inr _, Inl _ ) -> False

(Inr b1, Inr b2 ) -> lte o2 b1 b2

lte (OProd o1 o2) a b =

lte o1 (fst a) (fst b) &&

(lte o1 (fst b) (fst a) ==> lte o2 (snd a) (snd b))

lte (OMap g o) a b = lte o (g a) (g b)

lte (OChar) a b = a <= b

Sorting lists of words:

qsort (lte ostring)
8



Distributive sorting & searching: Idea

Employ the structure of order representations directly.

A hierarchy of operations:

sort :: Order k -> List (k,v) -> List v

discr :: Order k -> List (k,v) -> List (List v)

trie :: Order k -> List (k,v) -> Trie k (List v)

We separate keys from satellite data, i.e. associated values.

9



Distributive Sorting & Searching: Examples
The keys are discarded:

sort ostring [("ab",1), ("ba",2), ("abc",3), ("ba",4)]

=⇒ [1,3,2,4]

Note: sort is stable.
Returning the keys (sorting as permutation):

sort ostring (map (fn a -> (a, a)) ["ab","ba","abc","ba"])

=⇒ ["ab","abc","ba","ba"]

Grouping values with equivalent keys:

discr ostring [("ab",1), ("ba",2), ("abc",3), ("ba",4)]

=⇒ [[1],[3],[2,4]]

Distributive searching:

let dict =

trie ostring [("ab",1), ("ba",2), ("abc",3), ("ba",4)]

in lookup dict "ba"

=⇒ Just [2,4]

10



Generic distributive sorting

sort o takes list of key-value pairs, returns values in
non-decreasing order of their associated keys.

sort :: Order k -> List (k,v) -> List v

sort o [] = []

sort OUnit rel = map (fn (k,v) -> v) rel

sort (OSum o1 o2) rel =

sort o1 (filter froml rel) ++ sort o2 (filter fromr rel)

sort (OProd o1 o2) rel =

sort o1 (sort o2 (map curryr rel))

sort (OMap g o) rel =

sort o (map (f * id) rel)

sort (OChar) rel = bucketsort rel

Let us look at some clauses.

11



Distributive sorting: Discussion

Each component of each key is touched exactly once.

Ignoring OMap.

The running time is linear in the total size of the keys.

sort generalizes least-significant-digit (LSD) radix sort to
user-definable orders on arbitrary data types.

sort uses o as a control structure to reduce a sorting problem
to basic sorting on finite domains (bootstrapping).

Practical performance determined by sorting small integers.

12



Distributive sorting: Properties

Naturality, sort o commutes with map:

map f . sort o = sort o . map (id * f)

Strong naturality, sort o commutes with filtering:

filter p . sort o = sort o . filter (id * p)

Sorting singletons

sort o [(k, v)] = [v]

Sorting pairs:
sort o [(a,v), (b,w)] = [v,w] ⇐⇒ lte o a b = True

Theorem: Strong naturality + sorting singletons + sorting pairs
=⇒ stable sort.

13



Generic Tries: Definition

An element of Trie K V represents a finite map from K to V.
Introduce map constructors:

data Trie k v where

TEmpty :: Trie k v -- empty map

TUnit :: v -> Trie () v -- singleton map

TSum :: Trie k1 -> Trie k2 v -> Trie (k1 + k2) v

TProd :: Trie k1 (Trie k2 v) -> Trie (k1, k2) v

TMap :: (k1 -> k2) -> Trie k2 v -> Trie k1 v

TChar :: Char.Map v -> Trie Char v

The first type argument is an index, the second a parameter.

14



Building tries in bulk

build :: Order k -> List (k, v) -> Trie k (List v)

build o [] = TEmpty

build OUnit rel = TUnit (map val rel)

build (OSum o1 o2) rel = TSum (build o1 (filter froml rel))

(build o2 (filter fromr rel))

build (OProd o1 o2) rel =

TProd (fmap (build o2) (build o1 (map curryl rel)))

build (OMap g o) rel = TMap g (build o (map (g * id) rel))

build (OChar) rel = TChar (Char.build rel)

where

curryl ((k1, k2), v) = (k1, (k2, v))

and

fmap :: (v -> w) -> Trie k v -> Trie k w

is morphism mapping component of functor Trie k
15



Building tries in bulk: Complexity

trie and lookup are asymptotically optimal:

trie builds a trie in time linear in the total size of the keys in
the input.

lookup :: Trie k v -> k -> Maybe v returns its result in
time linear in the size of the key input (independent of the trie
input)

Better yet: In the minimum distinguishing prefix of the key in
the trie.

(Ignoring OMap)

Better than one-at-a-time insertion into trie.

16



Generic Tries: Properties

Tries are based on the laws of exponentials (Trie K V ∼= V K ):

V 1 ∼= V V K1+K2 ∼= V K1 × V K2 V K1×K2 ∼= (V K2)K1

Correctness:

discr o = flatten . trie o

sort o = concat . discr o

where flatten :: Trie k v -> List v flattens a trie into
a list by homomorphically interpreting trie constructors as list
operations.

Proofs use strong naturality properties of discr and sort

17



Benchmark: Searching the Bible

Preparatory steps (we use Project Gutenberg’s The Bible):

bible <- readFile "pg30.txt"

let rel = zip (words bible) [0 ..]

let concordance = build ostring rel

Where is "God"?

lookup concordance "God"

=⇒ Just [467,496,506,518,527,536,559,583,610,...

How frequent is "God"?

fmap length (lookup concordance "God")

=⇒ Just 2229

And the "devil"?

fmap length (lookup concordance "devil")

=⇒ Just 23

18



Benchmark: Performance

Sorting the words of Project Gutenberg’s The Bible (5218802
characters, 824337 words).

19



Summary

Generic distributive sorting and searching

Orders are represented syntactically

Many sort orders per type, not just standard order

The separation of keys and values is essential:

sort :: Order k -> List (k, v) -> List v

discr :: Order k -> List (k, v) -> List (List v)

build :: Order k -> List (k, v) -> Trie k (List v)

Correctness via strong naturality
Keys are used affinely (used at most once) =⇒ linear time
complexity

Unoptimized Haskell implementation with surprisingly good
performance

20



Related Work

Cai, J., Paige, R.: Using multiset discrimination to solve language
processing problems without hashing. Theoretical Computer Science
145(1-2) (July 1995) 189–228.

Henglein, F.: Generic discrimination: Sorting and partitioning
unshared data in linear time. In Hook, J., Thiemann, P., eds.: Proc.
13th ACM SIGPLAN Int’l Conf. on Functional Programming
(ICFP), (September 2008) 91–102.

Henglein, F.: Generic top-down discrimination for sorting and
partitioning in linear time. Journal of Functional Programming
22(3) (July 2012) 300–374.

Connelly, R.H., Morris, F.L.: A generalization of the trie data
structure. Mathematical Structures in Computer Science 5(3)
(September 1995) 381–418.

Hinze, R.: Generalizing generalized tries. Journal of Functional
Programming 10(4) (2000) 327–351.

21


