
Type Inference for the Spine View of Data

Matthew Roberts

December 16, 2013



The Question

Can you add the spine view of data to a Hindley-Milner System
without sacrificing type inference?



The Answer

Yes!



The Context

▶ It has been shown already that extensions of
Hindley-Milner which include type annotations can
compute types for the spine view[1] of data

▶ bondi (The Pattern Calculus) [2]
▶ Scrap Your Boilerplate (GHC) [4]
▶ dgen[5]



The Usual View of Data

data Tree a = Node (Tree a) a (Tree a) | Leaf
tree1 = (Node (Node Leaf 4 Leaf) 2 (Node Leaf 4 Leaf))

..Node.

Node

.

Leaf

.

4

.

Leaf

.

2

.

Node

.

Leaf

.

3

.

Leaf



The Spine View of Data

data Tree a = Node (Tree a) a (Tree a) | Leaf
tree1 = (Node (Node Leaf 4 Leaf) 2 (Node Leaf 4 Leaf))

..◦.

◦

.

◦

.

Node

.

◦

.

◦

.

◦

.

Node

.

Leaf

.

3

.

Leaf

.

2

.

◦

.

◦

.

◦

.

Node

.

Leaf

.

4

.

Leaf



Example Term

Apply a function to every sub-tree of a tree a.k.a Apply a
function to every sub-term of a term

bondi
let rec (apply2all : (all a. (a -> a)) -> b -> b) f z = (

| Ref x as y -> f y
| x y -> f ((apply2all f x) (apply2all f y))
| x -> f x)

z
;;



Example Term

Apply a function to every sub-tree of a tree a.k.a Apply a
function to every sub-term of a term

Scrap Your Boilerplate
everywhere :: (forall a. Data a => a -> a)

-> (forall a. Data a => a -> a)
everywhere f = f . gmapT (everywhere f)



Example Term

Apply a function to every sub-tree of a tree a.k.a Apply a
function to every sub-term of a term

dgen
def apply_to_all(f,g) :: (forall a . (a) -> a, b) -> b =

case [g] of
{ [c(a)] -> f(@apply_to_all(f,c)(apply_to_all(f,a)))
; [o] -> f(o)
} otherwise -> error "partial definition error in

apply_to_all"



A Single Language Addition Supports the
Spine View

ispair e bind (x,y) in f else g

Can we devise an algorithm (in the style of Hindley-Milner)
which can correctly elaborate the types for any program in a

language with no type annotations on terms and which includes
the ispair term?



A Single Language Addition Supports the
Spine View

ispair e bind (x,y) in f else g

Can we devise an algorithm (in the style of Hindley-Milner)
which can correctly elaborate the types for any program in a

language with no type annotations on terms and which includes
the ispair term?



The Key Contribution

A local implementation of existential types in the type inference
algorithm (which requires only constants in the unification

algorithm) is enough to support ispair in the Hindley-Milner
type inference algorithm.



A Hindley-Milner System - FCP

Type Language

type schemes σ ::= ∀α.σ (quantified type)
| τ (monotype)

monotypes τ, ρ ::= α (type variables)
| T τ1 . . . τn (constructed types)
| τ → ρ (function types)



A Hindley-Milner System - FCP

ς

Term Language
expressions e, f, g ::= v

| e f
| letrec x = e in f
| case e of (K(x1, . . . , xn)) → f

| ispair e bind (x, y) in f else g

values v ::= λx.e
| K(v1, . . . , vn)

| s

| π

semi-values s ::= x
| s v



A Hindley-Milner System - FCPς

Term Language
expressions e, f, g ::= v

| e f
| letrec x = e in f
| case e of (K(x1, . . . , xn)) → f
| ispair e bind (x, y) in f else g

values v ::= λx.e
| K(v1, . . . , vn)

| s
| π

semi-values s ::= x
| s v



Type System

A ⊢ e : τe Ax,y, x : α → τe, y : α ⊢ f : τ
A ⊢ g : τ α /∈ TV(A, τ, τe)

A ⊢ (ispair e bind (x, y) in f else g) : τ



Inference Rule

TA ⊢ c : τc mod V
T′T(A, x : α → τc, y : α) ⊢ t : τt mod (V ∪ {α})

T′′T′TA ⊢ e : τe mod V τt
U∼ τe mod V

α new α /∈ TV(UTA,Uτt)

UT′′T′TA ⊢ ispair c bind (x, y) in t else e : Uτe mod V



Evidence that these rules are correct

▶ Type system is sound and complete w.r.t the semantics
▶ Type inference algorithm is implemented and heavily

exercised in dgen
▶ Proof of correctness of inference algorithm is pending …



The Consequences

▶ Any functional language with programmer defined
data-types (Haskell, ML, F#, etc.) can support the spine
view of data without requiring any type annotations on
terms

▶ FCP [3] has all the required machinery in support of
first-class polymorphism. Thus the spine view can be a
small addition to this already small extension of
Hindley-Milner.



Where to now?

▶ A proof of the type inference algorithm
▶ dgen

https://bitbucket.org/altmattr/dgen


References I

Ralf Hinze, Andres Löh, and Bruno C. d. S. Oliveira.
“Scrap your boilerplate” reloaded.
In Functional and Logic Programming, volume 3945 of
Lecture Notes in Computer Science, pages 13–29. Springer
Berlin Heidelberg, 2006.

Barry Jay.
Pattern Calculus: Computing with Functions and
Structures.
Springer, 2009.



References II

M.P. Jones.
First-class polymorphism with type inference.
In 24th ACM Symposium on Principals of Programming
Languages (POPL ’97), pages 483–496. ACM Press New
York, NY, USA, January 1997.

Ralf Lämmel and Simon Peyton Jones.
Scrap your boilerplate: a practical design pattern for
generic programming.
ACM SIGPLAN Notices, 38(3):26–37, March 2003.
Proceedings of the ACM SIGPLAN Workshop on Types in
Language Design and Implementation (TLDI 2003).



References III

Matthew Roberts.
Compiled Generics for Functional Programming Languages.
PhD thesis, Macquarie University, 2011.


