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The Question

Can you add the spine view of data to a Hindley-Milner System
without sacrificing type inference?



The Answer

Yes!



The Context

▶ It has been shown already that extensions of
Hindley-Milner which include type annotations can
compute types for the spine view[1] of data

▶ bondi (The Pattern Calculus) [2]
▶ Scrap Your Boilerplate (GHC) [4]
▶ dgen[5]



The Usual View of Data

data Tree a = Node (Tree a) a (Tree a) | Leaf
tree1 = (Node (Node Leaf 4 Leaf) 2 (Node Leaf 4 Leaf))
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The Spine View of Data

data Tree a = Node (Tree a) a (Tree a) | Leaf
tree1 = (Node (Node Leaf 4 Leaf) 2 (Node Leaf 4 Leaf))
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Example Term

Apply a function to every sub-tree of a tree a.k.a Apply a
function to every sub-term of a term

bondi
let rec (apply2all : (all a. (a -> a)) -> b -> b) f z = (

| Ref x as y -> f y
| x y -> f ((apply2all f x) (apply2all f y))
| x -> f x)

z
;;



Example Term

Apply a function to every sub-tree of a tree a.k.a Apply a
function to every sub-term of a term

Scrap Your Boilerplate
everywhere :: (forall a. Data a => a -> a)

-> (forall a. Data a => a -> a)
everywhere f = f . gmapT (everywhere f)



Example Term

Apply a function to every sub-tree of a tree a.k.a Apply a
function to every sub-term of a term

dgen
def apply_to_all(f,g) :: (forall a . (a) -> a, b) -> b =

case [g] of
{ [c(a)] -> f(@apply_to_all(f,c)(apply_to_all(f,a)))
; [o] -> f(o)
} otherwise -> error "partial definition error in

apply_to_all"



A Single Language Addition Supports the
Spine View

ispair e bind (x,y) in f else g

Can we devise an algorithm (in the style of Hindley-Milner)
which can correctly elaborate the types for any program in a

language with no type annotations on terms and which includes
the ispair term?
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The Key Contribution

A local implementation of existential types in the type inference
algorithm (which requires only constants in the unification

algorithm) is enough to support ispair in the Hindley-Milner
type inference algorithm.



A Hindley-Milner System - FCP

Type Language

type schemes σ ::= ∀α.σ (quantified type)
| τ (monotype)

monotypes τ, ρ ::= α (type variables)
| T τ1 . . . τn (constructed types)
| τ → ρ (function types)



A Hindley-Milner System - FCP

ς

Term Language
expressions e, f, g ::= v

| e f
| letrec x = e in f
| case e of (K(x1, . . . , xn)) → f

| ispair e bind (x, y) in f else g

values v ::= λx.e
| K(v1, . . . , vn)

| s

| π

semi-values s ::= x
| s v
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Type System

A ⊢ e : τe Ax,y, x : α → τe, y : α ⊢ f : τ
A ⊢ g : τ α /∈ TV(A, τ, τe)

A ⊢ (ispair e bind (x, y) in f else g) : τ



Inference Rule

TA ⊢ c : τc mod V
T′T(A, x : α → τc, y : α) ⊢ t : τt mod (V ∪ {α})

T′′T′TA ⊢ e : τe mod V τt
U∼ τe mod V

α new α /∈ TV(UTA,Uτt)

UT′′T′TA ⊢ ispair c bind (x, y) in t else e : Uτe mod V



Evidence that these rules are correct

▶ Type system is sound and complete w.r.t the semantics
▶ Type inference algorithm is implemented and heavily

exercised in dgen
▶ Proof of correctness of inference algorithm is pending …



The Consequences

▶ Any functional language with programmer defined
data-types (Haskell, ML, F#, etc.) can support the spine
view of data without requiring any type annotations on
terms

▶ FCP [3] has all the required machinery in support of
first-class polymorphism. Thus the spine view can be a
small addition to this already small extension of
Hindley-Milner.



Where to now?

▶ A proof of the type inference algorithm
▶ dgen

https://bitbucket.org/altmattr/dgen
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