# General Game Playing and the Game Description Language

#### Abdallah Saffidine

University of New South Wales

December, 16





## Another Kind of Logic Language

#### GDL is not Prolog

- No cuts
- Hypotheses are not ordered
- Forward and backward chaining are possible
- Grounding

#### GDL is not Datalog

- Nested function symbols
- Recursion restriction
- Dynamic keywords: init, true, next
- Semantics = Transition system

#### Introduction

| Initial State      |                |         |          |               |
|--------------------|----------------|---------|----------|---------------|
| (init              | (cell          | 1       | 1        | b))           |
| <br>(init<br>(init | (cell<br>(ctrl | 3<br>xp | 3<br>pla | b))<br>ayer)) |

#### Next State

| (← | (next | (cell M N P))               |
|----|-------|-----------------------------|
|    | (does | P (mark M N)))              |
| (← | (next | (ctrl oplayer))             |
|    | (true | <pre>(ctrl xplayer)))</pre> |
| (← | (next | (ctrl xplayer))             |
|    | (true | (ctrl oplayer)))            |

### Legal Actions

(← (legal P (mark M N)) (true (ctrl P)) (true (cell M N b)))

(← (next (cell M N C)) (true (cell M N C)) (does P (mark M' N')) (or (distinct M M') (distinct N N')))

#### Auxiliary predicates (← (line P) (true (cell M 1 P)) (true (cell M 2 P)) (true (cell M 3 P)) (← (line P) (true (cell 1 N P)) (true (cell 2 N P)) (true (cell 3 N P)) (← emptycell (true (cell M N b)))

**Objective** (← (goal xplayer 100) (line xplayer)) (← (goal oplayer 0) (line xplayer))

#### Termination

(← terminal (line P)) (← terminal (not emptycell)))

#### Typical competition time limits

- Startclock: 600 sec per match
- Playclock: 30 sec per move

Making the most out of the competition settings

- GDL is not Prolog → Hypotheses are not ordered
- Startclock  $\rightarrow$  Optimize the compiler's parameters

#### Into perspective

- Classical compilers: globally-tune default flags.
- Automatic empirical optimization (ATLAS/FFTW3): tune to the hardware/installed software.
- Here: tune to the instance (also [Keller et al., 2008]).

## Hypotheses Ordering

Rule

 $(\leftarrow (\text{legal white (move } X_1 \ Y_1 \ X_2 \ Y_2)) \\ (\text{succ } Y_1 \ Y_2) \\ (\text{succ } X_1 \ X_2) \\ (\text{cell } X_1 \ Y_1 \ w) \\ (\text{not (cell } X_2 \ Y_2 \ w)))$ 

Input Restriction  

$$Y_1, Y_2$$
  
 $X_1, X_2$   
 $X_1, Y_1$   
 $X_2, Y_2$ 

## Hypotheses Ordering

|    | Rule                                                                                                                                   | Input                                                   | Restriction                                                         |
|----|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|
| (← | (legal white (move $X_1 Y_1 X_2 Y_2$ ))<br>(succ $Y_1 Y_2$ )<br>(succ $X_1 X_2$ )<br>(cell $X_1 Y_1 w$ )<br>(not (cell $X_2 Y_2 w$ ))) | $Y_1, Y_2 X_1, X_2$                                     | $\begin{array}{c} X_1, \ Y_1 \\ X_2, \ Y_2 \end{array}$             |
| (← | (legal white (move $X_1 Y_1 X_2 Y_2$ ))<br>(succ $Y_1 Y_2$ )<br>(cell $X_1 Y_1$ w)<br>(succ $X_1 X_2$ )<br>(not (cell $X_2 Y_2$ w)))   | $\begin{array}{c} Y_1, \ Y_2 \\ X_1 \\ X_2 \end{array}$ | Y <sub>1</sub><br>X <sub>1</sub><br>X <sub>2</sub> , Y <sub>2</sub> |

| <b>Knowledge Base</b>                                                                                                                                |                                                                                                                                                                                    |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| {(succ 1 2), (succ 2 3), (succ 3 4), (cell 1 1 w),<br>(cell 1 2 w), (cell 2 2 w), }                                                                  |                                                                                                                                                                                    |  |  |  |
| Steps                                                                                                                                                | Satisfying assignments: $\{[X_1 \ X_2 \ Y_1 \ Y_2]\}$                                                                                                                              |  |  |  |
| $(succ Y_1 Y_2) (succ X_1 X_2) (cell X_1 Y_1 w) (not (cell X_2 Y_2 w)))$                                                                             | $ \{ [\_12], [\_23], [\_34] \} \\ \{ [1212], [2312], [3412], [1223], [2323] \\ [3423], [1234], [2334], [3434] \} \\ \{ [1212], [1223], [2323], [2323] \} \\ \{ [1223], [2323] \} $ |  |  |  |
| $(succ Y_1 Y_2)$<br>(cell X <sub>1</sub> Y <sub>1</sub> w)<br>(succ X <sub>1</sub> X <sub>2</sub> )<br>(not (cell X <sub>2</sub> Y <sub>2</sub> w))) | $ \{ [\_ 1 2], [\_ 2 3], [\_ 3 4] \} \\ \{ [1 1 2], [1 2 3], [2 2 3] \} \\ \{ [1 2 1 2], [1 2 2 3], [2 3 2 3] \} \\ \{ [1 2 2 3], [2 3 2 3] \} $                                   |  |  |  |

## Knowledge Base {(succ 1 2), (succ 1 3), (cell 1 1 w), (cell 2 1 w), (cell 3 1 w), (cell 4 1 w), ...}

| Steps                                                                    | Satisfying assignments: $\{[X_1 \ X_2 \ Y_1 \ Y_2]\}$                                                                                                                                                                   |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(succ Y_1 Y_2) (succ X_1 X_2) (cell X_1 Y_1 w) (not (cell X_2 Y_2 w)))$ | $ \begin{array}{l} \{ [\_\_1 2], [\_\_1 3] \} \\ \{ [1 2 1 2], [1 3 1 2], [1 2 1 3], [1 3 1 3] \} \\ \{ [1 2 1 2], [1 3 1 2], [1 2 1 3], [1 3 1 3] \} \\ \{ [1 2 1 2], [1 3 1 2], [1 2 1 3], [1 3 1 3] \} \end{array} $ |
| (succ $Y_1$ $Y_2$ )                                                      | {[12], [13]}                                                                                                                                                                                                            |
| (cell $X_1 Y_1$ w)                                                       | $\{[1 \_ 1 2], [2 \_ 1 2], [3 \_ 1 2], [4 \_ 1 2], [1 \_ 1 3] [2 \_ 1 3] [3 \_ 1 3] [4 \_ 1 3] \}$                                                                                                                      |
| (succ $X_1 X_2$ )<br>(not (cell $X_2 Y_2$ w)))                           | {[1 2 1 2], [1 3 1 2], [1 2 1 3], [1 3 1 3]}<br>{[1 2 1 2], [1 3 1 2], [1 2 1 3], [1 3 1 3]}                                                                                                                            |

#### Empirical hypotheses ordering

- Get the rules
- Naive compilation
- Collect data via random games
- Infer a good hypotheses ordering
- $\bullet \rightarrow Smart \ compilation$

#### Empirical hypotheses ordering

- Get the rules
- Naive compilation
- Collect data via random games
- Infer a good hypotheses ordering
- $\bullet \rightarrow Smart \ compilation$

#### Experiments: engine speed (higher is better)

| Game           | Original | Inferred | Improvement |
|----------------|----------|----------|-------------|
| Peg solitaire  | 3.6      | 139      | 3800%       |
| Connect 4      | 78.7     | 111      | 141%        |
| Mini-chess     | 62.7     | 74.8     | 119%        |
| Ro-sham-bo     | 1,480    | 1,610    | 109%        |
| Sheep and Wolf | 101      | 94.3     | 93%         |



#### Language-level: Decomposition into sub-games



Al level: Complexity reduction  $(b_1b_2)^n \rightarrow b_1^n + b_2^n$ 





## **Reachability Analysis**

#### What for?

- Deadlock analysis
- Termination analysis

- Precise static typing
- Dead-code detection

# **Reachability Analysis**

#### What for?

- Deadlock analysis
- Termination analysis

- Precise static typing
- Dead-code detection

| Prop: no variables                       | Fragment   | Reachability |
|------------------------------------------|------------|--------------|
| <ul> <li>Mono: facts are never</li></ul> | Prop, Mono | NP-C         |
| removed from the KB                      | Prop       | PSPACE-C     |
| <ul> <li>Bounded: stronger</li></ul>     | Mono       | NEXPTIME-C   |
| recursion restriction                    | Bounded    | EXPSPACE-C   |
|                                          | Full       | UNDEC        |

## Conclusion

#### In the AI community: a Hot Topic

- Yearly international competition
- Journal special issues, workshops
- Masters students, PhDs
- Massive OO Course (≥ 50,000 students)

## Conclusion

#### In the AI community: a Hot Topic

- Yearly international competition
- Journal special issues, workshops
- Masters students, PhDs
- Massive OO Course (≥ 50,000 students)

### In the PL community: We need You!

- Low hanging fruits
- Some interesting problems?

