
A Practical Theory of
Language-Integrated Query

James Cheney, Sam Lindley, Philip Wadler
University of Edinburgh

Yow!, MPLW, FP with the Stars, SAPLING
Melbourne, Brisbane, Sydney

December 2013

What is the difference between
theory and practice?

In theory there
is no difference.
But in practice

there is.

How does one integrate SQL
and a host language?

How does one integrate a Domain-Specific Language
and a host language?

Domain-Specific Language (DSL)
Domain-Specific Embedded Language (DSEL)

How does one integrate SQL
and a host language?

How does one integrate a Domain-Specific Language
and a host language?

Domain-Specific Language (DSL)
Domain-Specific Embedded Language (DSEL)

A functional language is a
Domain-Specific Language

for defining
Domain-Specific Languages

Links LINQ

Wadler, Yallop, Lindley, Cooper Meijer (C#,VB), Syme (F#)

(Edinburgh) (Microsoft)

Links LINQ

Wadler, Yallop, Lindley, Cooper Meijer (C#,VB), Syme (F#)

(Edinburgh) (Microsoft)

Links LINQ

Wadler, Yallop, Lindley, Cooper Meijer (C#,VB), Syme (F#)

(Edinburgh) (Microsoft)

Scylla and Charybdis

Avoid Scylla and Charybdis
Each host query generates one SQL query

Scylla: failure to generate a query (⇥)
Charybdis: multiple queries, avalanche (av)

Example F# 2.0 F# 3.0 us

differences 17.6 20.6 18.1

range ⇥ 5.6 2.9

satisfies 2.6 ⇥ 2.9

satisfies 4.4 ⇥ 4.6

compose ⇥ ⇥ 4.0

P(t0) 2.8 ⇥ 3.3

P(t1) 2.7 ⇥ 3.0

expertise0 7.2 9.2 8.0

expertise ⇥ 66.7av 8.3

xp0 ⇥ 8.3 7.9

xp1 ⇥ 14.7 13.4

xp2 ⇥ 17.9 20.7

xp3 ⇥ 3744.9 3768.6
av marks query avalanche. All times in milliseconds.

Series of examples

Join queries
Abstraction over values (first-order)

Abstraction over predicates (higher-order)
Dynamic generation of queries

Nested intermediate data
Compiling XPath to SQL

Closed quotation vs. open quotation

Expr<A! B > vs. Expr<A>! Expr

T-LINQ: the theory

Scylla and Charybdis Theorem

P-LINQ: the practice

Measured times comparable
Normalisation a small fraction of time

Part I

Join queries

A database

people

name age

“Alex” 60

“Bert” 56

“Cora” 33

“Drew” 31

“Edna” 21

“Fred” 60

couples

her him

“Alex” “Bert”

“Cora” “Drew”

“Edna” “Fred”

A query in SQL

select w.name as name, w.age�m.age as diff

from couples as c,

people as w,

people as m

where c.her = w.name and c.him = m.name and w.age > m.age

name diff

“Alex” 4

“Cora” 2

A database as data

{people =

[{name = “Alex” ; age = 60};
{name = “Bert” ; age = 56};
{name = “Cora” ; age = 33};
{name = “Drew”; age = 31};
{name = “Edna”; age = 21};
{name = “Fred” ; age = 60}];

couples =

[{her = “Alex” ; him = “Bert” };
{her = “Cora” ; him = “Drew”};
{her = “Edna”; him = “Fred” }]}

Importing the database (naive)

type DB =

{people :

{name : string; age : int} list;

couples :

{her : string; him : string} list}
let db0 : DB = database(“People”)

A query as a comprehension (naive)

let differences0 : {name : string; diff : int} list =

for c in db0.couples do

for w in db0.people do

for m in db0.people do

if c.her = w.name && c.him = m.name && w.age > m.age then

yield {name : w.name; diff : w.age�m.age}

differences0

[{name = “Alex” ; diff = 4}
{name = “Cora”; diff = 2}]

Importing the database (quoted)

type DB =

{people :

{name : string; age : int} list;

couples :

{her : string; him : string} list}
let db : Expr<DB> = <@ database(“People”) @>

A query as a comprehension (quoted)

let differences : Expr< {name : string; diff : int} list> =

<@ for c in (%db).couples do

for w in (%db).people do

for m in (%db).people do

if c.her = w.name && c.him = m.name && w.age > m.age then

yield {name : w.name; diff : w.age�m.age} @>

run(differences)

[{name = “Alex” ; diff = 4}
{name = “Cora”; diff = 2}]

Running a query

1. compute quoted expression
2. simplify quoted expression
3. translate query to SQL
4. execute SQL
5. translate answer to host language

Scylla and Charybdis:

Each run generates one query if
A. answer type is flat (bag of record of scalars)
B. only permitted operations (e.g., no recursion)
C. only refers to one database

Scala (naive)
val differences:

List[{ val name: String; val diff: Int }] =

for {

c <- db.couples

w <- db.people

m <- db.people

if c.her == w.name && c.him == m.name && w.age > m.age

} yield new Record {

val name = w.name

val diff = w.age - m.age

}

Scala (quoted)
val differences:

Rep[List[{ val name: String; val diff: Int }]] =

for {

c <- db.couples

w <- db.people

m <- db.people

if c.her == w.name && c.him == m.name && w.age > m.age

} yield new Record {

val name = w.name

val diff = w.age - m.age

}

Part II

Abstraction, composition, dynamic generation

Abstracting over values

let range : Expr< (int, int)! Names> =

<@ fun(a, b) ! for w in (%db).people do

if a w.age && w.age < b then

yield {name : w.name} @>

run(<@ (%range)(30, 40) @>)

select w.name as name

from people as w

where 30 w.age and w.age < 40

Abstracting over a predicate

let satisfies : Expr< (int ! bool) ! Names> =

<@ fun(p) ! for w in (%db).people do

if p(w.age) then

yield {name : w.name} @>

run(<@ (%satisfies)(fun(x) ! 30 x && x < 40) @>)

select w.name as name

from people as w

where 30 w.age and w.age < 40

Datatype of predicates

type Predicate =

| Above of int

| Below of int

| And of Predicate⇥ Predicate

| Or of Predicate⇥ Predicate

| Not of Predicate

let t0 : Predicate = And(Above(30), Below(40))

Dynamically generated queries

let rec P(t : Predicate) : Expr< int ! bool> =

match t with

| Above(a)! <@ fun(x) ! (%lift(a)) x @>

| Below(a)! <@ fun(x) ! x < (%lift(a)) @>

| And(t, u) ! <@ fun(x) ! (%P(t))(x) && (%P(u))(x) @>

| Or(t, u) ! <@ fun(x) ! (%P(t))(x) || (%P(u))(x) @>

| Not(t) ! <@ fun(x) ! not((%P(t))(x)) @>

Generating the query

P(t0)

 <@ fun(x) ! (fun(x) ! 30 x)(x) && (fun(x) ! x < 40)(x) @>

 <@ fun(x) ! 30 x && x < 40 @>

run(<@ (%satisfies)(%P(t0)) @>)

select w.name as name

from people as w

where 30 w.age and w.age < 40

Part III

Nested intermediate data

Flat data
{departments =

[{dpt = “Product”};
{dpt = “Quality”};
{dpt = “Research”};
{dpt = “Sales”}];

employees =

[{dpt = “Product”; emp = “Alex”};
{dpt = “Product”; emp = “Bert”};
{dpt = “Research”; emp = “Cora”};
{dpt = “Research”; emp = “Drew”};
{dpt = “Research”; emp = “Edna”};
{dpt = “Sales”; emp = “Fred”}];

Flat data (continued)

tasks =

[{emp = “Alex”; tsk = “build”};
{emp = “Bert”; tsk = “build”};
{emp = “Cora”; tsk = “abstract”};
{emp = “Cora”; tsk = “build”};
{emp = “Cora”; tsk = “design”};
{emp = “Drew”; tsk = “abstract”};
{emp = “Drew”; tsk = “design”};
{emp = “Edna”; tsk = “abstract”};
{emp = “Edna”; tsk = “call”};
{emp = “Edna”; tsk = “design”};
{emp = “Fred”; tsk = “call”}]}

Importing the database

type Org = {departments : {dpt : string} list;

employees : {dpt : string; emp : string} list;

tasks : {emp : string; tsk : string} list }
let org : Expr<Org> = <@ database(“Org”) @>

Departments where every employee can do a given task

let expertise0 : Expr<string ! {dpt : string} list> =

<@ fun(u) ! for d in (%org).departments do

if not(exists(

for e in (%org).employees do

if d.dpt = e.dpt && not(exists(

for t in (%org).tasks do

if e.emp = t.emp && t.tsk = u then yield { })
)) then yield { })

)) then yield {dpt = d.dpt} @>

run(<@ (%expertise’)(“abstract”) @>)

[{dpt = “Quality”}; {dpt = “Research”}]

Nested data

[{dpt = “Product”; employees =

[{emp = “Alex”; tasks = [“build”]}
{emp = “Bert”; tasks = [“build”]}]};

{dpt = “Quality”; employees = []};
{dpt = “Research”; employees =

[{emp = “Cora”; tasks = [“abstract”; “build”; “design”]};
{emp = “Drew”; tasks = [“abstract”; “design”]};
{emp = “Edna”; tasks = [“abstract”; “call”; “design”]}]};

{dpt = “Sales”; employees =

[{emp = “Fred”; tasks = [“call”]}]}]

Nested data from flat data

type NestedOrg = [{dpt : string; employees :

[{emp : string; tasks : [string]}]}]
let nestedOrg : Expr<NestedOrg> =

<@ for d in (%org).departments do

yield {dpt = d.dpt; employees =

for e in (%org).employees do

if d.dpt = e.dpt then

yield {emp = e.emp; tasks =

for t in (%org).tasks do

if e.emp = t.emp then

yield t.tsk}}} @>

Higher-order queries

let any : Expr< (A list, A! bool) ! bool> =

<@ fun(xs, p) !
exists(for x in xs do

if p(x) then

yield { }) @>

let all : Expr< (A list, A! bool) ! bool> =

<@ fun(xs, p) !
not((%any)(xs, fun(x) ! not(p(x)))) @>

let contains : Expr< (A list, A) ! bool> =

<@ fun(xs, u) !
(%any)(xs, fun(x) ! x = u) @>

Departments where every employee can do a given task

let expertise : Expr<string ! {dpt : string} list> =

<@ fun(u) ! for d in (%nestedOrg)

if (%all)(d.employees,

fun(e) ! (%contains)(e.tasks, u) then

yield {dpt = d.dpt} @>

run(<@ (%expertise)(“abstract”) @>)

[{dpt = “Quality”}; {dpt = “Research”}]

Part IV

Compiling XPath to SQL

Part V

Closed quotation vs. open quotation

Dynamically generated queries, revisited

let rec P(t : Predicate) : Expr< int ! bool> =

match t with

| Above(a)! <@ fun(x) ! (%lift(a)) x @>

| Below(a)! <@ fun(x) ! x < (%lift(a)) @>

| And(t, u) ! <@ fun(x) ! (%P(t))(x) && (%P(u))(x) @>

vs.
let rec P(t : Predicate)(x : Expr< int>) : Expr<bool> =

match t with

| Above(a)! <@ (%lift(a)) (%x) @>

| Below(a)! <@ (%x) < (%lift(a)) @>

| And(t, u) ! <@ (%P(t)(x)) && (%P(u)(x)) @>

Abstracting over a predicate, revisited

let satisfies : Expr< (int ! bool) ! Names> =

<@ fun(p) ! for w in (%db).people do

if p(w.age) then

yield {name : w.name} @>

vs.
let satisfies(p : Expr< int>! Expr<bool>) : Expr<Names> =

<@ for w in (%db).people do

if (%p(<@ w.age @>)) then

yield {name : w.name} @>

closed quotations
vs.

open quotations

quotations of functions
(Expr<A ! B>)

vs.
functions of quotations
(Expr<A>! Expr)

Part VI

T-LINQ: the theory

Host language

FUN

�, x : A ` N : B

� ` fun(x) ! N : A! B

APP

� ` L : A! B � `M : A

� ` L M : B

SINGLETON

� `M : A

� ` yield M : A list

FOR

� `M : A list �, x : A ` N : B list

� ` for x in M do N : B list

QUOTE

�; · `M : A

� ` <@ M @> : Expr<A>

RUN

� `M : Expr<T >

� ` run(M) : T

REC

�, f : A! B, x : A ` N : B

� ` rec f (x) ! N : A! B

Quoted language
FUNQ

�; �, x : A ` N : B

�; � ` fun(x) ! N : A! B

APPQ
�; � ` L : A! B �; � `M : A

�; � ` L M : B

SINGLETONQ
�; � `M : A

�; � ` yield M : A list

FORQ
�; � `M : A list �; �, x : A ` N : B list

�; � ` for x in M do N : B list

ANTIQUOTE

� `M : Expr<A>

�; � ` (%M) : A

LIFT

� `M : O

� ` lift(M) : Expr<O >

DATABASE

⌃(db) = {` : T}
�; � ` database(db) : {` : T}

Normalisation: symbolic evaluation

(fun(x) ! N) M N [x := M]

{` = M}.`i Mi

for x in (yield M) do N N [x := M]

for y in (for x in L do M) do N for x in L do (for y in M do N)

for x in (if L then M) do N if L then (for x in M do N)

for x in [] do N []

for x in (L @M) do N (for x in L do N) @ (for x in M do N)

if true then M M

if false then M []

Normalisation: ad hoc rewriting

for x in L do (M @N) ,! (for x in L do M) @ (for x in L do N)

for x in L do [] ,! []

if L then (M @N) ,! (if L then M) @ (if L then N)

if L then[] ,! []

if L then (for x in M do N) ,! for x in M do (if L then N)

if L then (if M then N) ,! if (L && M) then N

Theorem (Scylla and Charybdis) If

` L : A

and A is a table type (list of record of scalars) then

L ⇤ M and M ,!⇤ N,

where M and N are in normal form with respect to and ,!, and
N is isomorphic to an SQL query.

Part VII

P-LINQ: the practice

Example F# 2.0 F# 3.0 us (norm)

differences 17.6 20.6 18.1 0.5

range ⇥ 5.6 2.9 0.3

satisfies 2.6 ⇥ 2.9 0.3

satisfies 4.4 ⇥ 4.6 0.3

compose ⇥ ⇥ 4.0 0.8

P(t0) 2.8 ⇥ 3.3 0.3

P(t1) 2.7 ⇥ 3.0 0.3

expertise0 7.2 9.2 8.0 0.6

expertise ⇥ 66.7av 8.3 0.9

xp0 ⇥ 8.3 7.9 1.9

xp1 ⇥ 14.7 13.4 1.1

xp2 ⇥ 17.9 20.7 2.2

xp3 ⇥ 3744.9 3768.6 4.4
av marks query avalanche. All times in milliseconds.

Q# F# 3.0 us (norm)

Q1 2.0 2.4 0.3

Q2 1.5 1.7 0.2

Q5 1.7 2.1 0.3

Q6 1.7 2.1 0.3

Q7 1.5 1.8 0.2

Q8 2.3 2.4 0.2

Q9 2.3 2.7 0.3

Q10 1.4 1.7 0.2

Q11 1.4 1.7 0.2

Q12 4.4 4.9 0.4

Q13 2.5 2.9 0.4

Q14 2.5 2.9 0.3

Q# F# 3.0 us (norm)

Q15 3.5 4.0 0.5

Q16 3.5 4.0 0.5

Q17 6.2 6.7 0.4

Q18 1.5 1.8 0.2

Q19 1.5 1.8 0.2

Q20 1.5 1.8 0.2

Q21 1.6 1.9 0.3

Q22 1.6 1.9 0.3

Q23 1.6 1.9 0.3

Q24 1.8 2.0 0.3

Q25 1.4 1.6 0.2

Q27 1.8 2.1 0.2

Q# F# 3.0 us (norm)

Q29 1.5 1.7 0.2

Q30 1.8 2.0 0.2

Q32 2.7 3.1 0.3

Q33 2.8 3.1 0.3

Q34 3.1 3.6 0.5

Q35 3.1 3.6 0.4

Q36 2.2 2.4 0.2

Q37 1.3 1.6 0.2

Q38 4.2 4.9 0.6

Q39 4.2 4.7 0.4

Q40 4.1 4.6 0.4

Q41 6.3 7.3 0.6

Q# F# 3.0 us (norm)

Q42 4.7 5.5 0.5

Q43 7.2 6.9 0.7

Q44 5.4 6.2 0.7

Q45 2.2 2.6 0.3

Q46 2.3 2.7 0.4

Q47 2.1 2.5 0.3

Q48 2.1 2.5 0.3

Q49 2.4 2.7 0.3

Q50 2.2 2.5 0.3

Q51 2.0 2.4 0.3

Q52 6.1 5.9 0.4

Q53 11.9 11.2 0.6

Q# F# 3.0 us (norm)

Q54 4.4 4.8 0.4

Q55 5.2 5.6 0.4

Q56 4.6 5.1 0.5

Q57 2.5 2.9 0.4

Q58 2.5 2.9 0.4

Q59 3.1 3.6 0.5

Q60 3.6 4.4 0.7

Q# F# 3.0 us (norm)

Q61 5.8 6.3 0.3

Q62 5.4 5.9 0.2

Q63 3.4 3.8 0.4

Q64 4.3 4.9 0.6

Q65 10.2 10.1 0.4

Q66 8.9 8.7 0.6

Q67 14.7 13.1 1.1

All times in milliseconds.

Part VIII

What else are we up to?

Blame: Integrating static and dynamic typing

Ahmed, Findler, Siek, Wadler

• Well-typed programs can’t be blamed, ESOP 2009.

• Threesomes, with and without blame, POPL 2010.

• Blame for all, POPL 2011.

• A plague on both your houses: Allocating blame symmetrically and precisely
2013, to appear.

Links: Web programming without tiers

Wadler, Yallop, Lindley, Cooper

• Links: Web programming without tiers, FMCO 2006.

• The essence of form abstraction, ASPLAS 2008.
F# (WebSharper), Haskell (Tupil, Digestive Functors, Happstack, Yesod),
Common Lisp, JavaScript, Racket, Scala.

• Idioms are Oblivious, Arrows are Meticulous, Monads are Promiscuous
MSFP 2008.

• The arrow calculus, JFP 2010.

ABCD: A Basis for Concurrency and Distribution

Najd, Wadler, Lindley, Morris

• From Session Types to Data Types: A Basis for Concurrency and
Distribution, EPSRC 2013–2018.

• Co-PIs: Simon Gay, Glasgow, and Nobuko Yoshida, Imperial.
Collaborators: Amazon, Cognizant, OOI, Red Hat, VMWare.

• Propositions as Sessions, ICFP 2012, JFP 2014.

• A practical theory of language-integrated query, ICFP 2013.

Part IX

Conclusion

Series of examples

Join queries
Abstraction over values (first-order)

Abstraction over predicates (higher-order)
Dynamic generation of queries

Nested intermediate data
Compiling XPath to SQL

Closed quotation vs. open quotation

Expr<A! B > vs. Expr<A>! Expr

T-LINQ: the theory

Scylla and Charybdis Theorem

P-LINQ: the practice

Measured times comparable
Normalisation a small fraction of time

Good DSLs copy, great DSLs steal

Nikola (Mainland and Morrisett 2010)
Feldspar (Axelsson et al. 2010; Axelsson and Svenningsson 2012)

Host DSEL

a + b a + b

a < b a .<. b

if a then b else c a ? (b, c)

DSEL’s steal the host’s type system.
We steal the host’s type system and syntax, and we provide normalisation.

Theory and Practice

T-LINQ:
doesn’t cover sorting, grouping, aggregation

(work for tomorrow)

P-LINQ:
covers all of LINQ

(put it to work today!)

http://fsprojects.github.io/FSharp.Linq.Experimental.ComposableQuery/

What is the difference between
theory and practice?

In theory there
is no difference.
But in practice

there is.

What is the difference between
theory and practice?

In theory there
is a difference.
But in practice

there isn’t.

