
A Conclusion on Inheritance Anomaly

Andrew E. Santosa
Oracle Labs Australia

Abstract
In concurrent programming using an object-oriented program, programmers adding

new methods in a subclass typically have to modify the code of the superclass, which
inhibits reuse, a problem known as inheritance anomaly. There have been much efforts
by researchers in the last two decades to solve the problem by deriving anomaly-free
languages. Yet, these proposals have not ended up as practical solutions, thus one may
ask why.

This talk presents the recently published work of Gramoli and Santosa [1], where
the authors investigated the issue from two perspectives. From the theoretical perspec-
tive, the authors demonstrate that a freedom from inheritance anomaly necessitates a
language where ensuring Liskov-Wing substitutability becomes a language contain-
ment problem, which in their formal modeling is PSPACE hard. This indicates that we
cannot expect programmers to manually ensure that subtyping holds in an anomaly-
free language. Anomaly freedom thus predictably leads to software bugs and the work
throws doubt on the value of providing it. From the practical perspective, the prob-
lem is already solved. Inheritance anomaly is part of the general fragile base class
problem of object-oriented programming, that arises due to code coupling in imple-
mentation inheritance. In modern software practice, the fragile base class problem is
circumvented by interface abstraction to avoid implementation inheritance, and opting
for composition as means for reuse.

References
[1] V. Gramoli and Andrew E. Santosa. Why inheritance anomaly is not worth solving.

In ICOOOLPS ’14. ACM, 2014.


