

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Dynamic Symbolic Execution for Object-
Oriented Libraries
Lian Li and Andrew Santosa
Oracle Labs Australia
November 2014

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 3

The following is intended to provide some insight into a line of research in
Oracle Labs. It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making purchasing
decisions. Oracle reserves the right to alter its development plans and practices
at any time, and the development, release, and timing of any features or
functionality described in connection with any Oracle product or service
remains at the sole discretion of Oracle. Any views expressed in this
presentation are my own and do not necessarily reflect the views of Oracle.

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

• Address static analysis limitations

– False positives due to over approximation

– Complex language aspects: Exception, aliasing

– Dynamic features of Java: class loading, reflection

• Test generation based on symbolic execution

– Exercise vulnerable execution traces

Why Fuzzing?
Hybrid symbolic-analysis exercising vulnerable execution traces

4

Targeted
Finds

JDK
Vulnerabilities

Found by
Static Analysis

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Dynamic Symbolic Execution

• Symbolic Execution

– Program inputs represented as symbols

– Instructions interpreted as constraints on symbols

– Solve constraints to generate tests exercising program path

• Dynamic symbolic execution (Con-colic execution)

– Perform symbolic execution at runtime, together with concrete execution

– Program path induced by concrete execution

– Mutate path condition to explore different paths

5

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Challenges in JDK Symbolic Execution

• The complexity of JDK

– Native library

– Reflection

– Exception handling

• Symbolic execution of method invocations

– Mutation of invocation targets

– Critical for testing object-oriented libraries and for finding JDK vulnerabilities

6

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Symbolic Execution Example

7

public class InterfaceAddress {

 private InetAddress address;

 private InetAddress broadcast;

 . . .

 public boolean equals (Object obj) {

1 if (!(obj instanceof InterfaceAddress))

2 return false;

3 InterfaceAddress cmp = (Interface) obj;

4 if (!address.equals(cmp.address))

5 return false;

6 if (!broadcast.equals(cmp.broadcast))

7 return false;

 . . .

 }

};

Null Pointer Exception

Bug 6628576 in
http://bugs.java.com

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Symbolic Execution Example

8

public class InterfaceAddress {

 private InetAddress address;

 private InetAddress broadcast;

 . . .

 public boolean equals (Object obj) {

1 if (!(obj instanceof InterfaceAddress))

2 return false;

3 InterfaceAddress cmp = (Interface) obj;

4 if (!address.equals(cmp.address))

5 return false;

6 if (!broadcast.equals(cmp.broadcast))

7 return false;

 . . .

 }

};

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Symbolic Execution Example

9

• Mutating types to explore invocation
targets
– obj of type InterfaceAddress

– address of type InetAddress4 or
InetAddress6

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Infrastructure for JDK Symbolic Execution
Starting point: Synthesizer

• Synthesizes test programs to invoke
JDK API

10

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

The Symbolic Executor

• Synthesizes test programs to invoke
JDK API

• Symbolic execution of synthesized
programs

– Symbolic types for objects referenced by
parameters of reference types

– Generate path condition to represent the
execution trace

11

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

The Mutator

• Synthesizes test programs to invoke
JDK API

• Symbolic execution of synthesized
programs

• Mutates path conditions to explore
new execution paths

12

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

The Solver

• Synthesizes test programs to invoke
JDK API

• Symbolic execution of synthesized
programs

• Mutates path conditions to explore
new execution paths

• Solves mutated path conditions to
generate new tests

13

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Core Component: The Symbolic Executor
Dynamic Symbolic Execution of JDK via Instrumentation

14

• Introduces symbolic values and types for inputs

• Generates path conditions with symbolic types

• Explores virtual invocation symbolically

• Supports reflection partially

– Symbolic methods and symbolic fields

• Works with JNI calls

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Current Status: Other Components

• Synthesizer generates Java byte-code

– Creates objects using public constructors

• Mutator generates new path conditions

– Explores different invocation targets

• Solver handles type constraints
– Generates concrete input types and values

15

All Components Functioning

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Package #Classes
(#Tested/#Total)

#Methods
(#Tested/#Total)

Block Coverage (%)
For Tested Method

Time

java.lang 91 / 267 978 / 3775 70.1 464m 46s

java.text 28 / 63 273 / 664 58.5 117m 38s

java.nio 47 / 173 147 / 1715 62.0 4m 5s

java.beans 28 / 128 191 / 629 58.8 34m 32s

java.sql 12 / 16 33 / 81 41.5 3m 25s

Total 206 / 647 1622 / 6864 Avg: 57.35 623m 25s

Preliminary Results for Fuzzing OpenJDK-7u7b31
Automatically generate tests using the current infrastructure

16

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Summary

• Infrastructure designed for JDK

– Symbolically representing types and values

– Functioning on OpenJDK

• Future work for JDK vulnerability detection

– Full reflection library support

– Better synthesis algorithm using static analysis

– More efficient constraint solver

– Test generation to expose access control violations in JDK

17

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 18

