
Fusing filters with
Integer Linear Programming

 Amos Robinson (that’s me!)
Gabriele Keller
Ben Lippmeier

I don’t want to write this
 DO 10 I = 1, SIZE(XS)

 SUM1 = SUM1 + XS(I)

 IF (XS(I) .GT. 0) THEN

 SUM2 = SUM2 + XS(I)

 END IF

10 CONTINUE

!

 DO 20 I = 1, SIZE(XS)

 NOR1(I) = XS(I) / SUM1

 NOR2(I) = XS(I) / SUM2

20 CONTINUE

I’d rather write this

sum1 = fold (+) 0 xs

nor1 = map (/ sum1) xs

ys = filter (> 0) xs

sum2 = fold (+) 0 ys

nor2 = map (/ sum2) xs

But I also want speed

• Naive compilation: one loop for each combinator

• We need fusion!

Vertical fusion

sum1 = fold (+) 0 xs -- loop 1

nor1 = map (/ sum1) xs -- loop 2

ys = filter (> 0) xs -- loop 3

sum2 = fold (+) 0 ys -- loop 4

nor2 = map (/ sum2) xs -- loop 5

Vertical fusion

sum1 = fold (+) 0 xs -- loop 1

nor1 = map (/ sum1) xs -- loop 2

sum2 = filterFold

 (> 0) (+) 0 xs -- loop 3

nor2 = map (/ sum2) xs -- loop 4

Horizontal fusion

sum1 = fold (+) 0 xs -- loop 1

nor1 = map (/ sum1) xs -- loop 2

sum2 = filterFold

 (> 0) (+) 0 xs -- loop 3

nor2 = map (/ sum2) xs -- loop 4

Horizontal fusion

sum1 = fold (+) 0 xs -- loop 1

(nor1, sum2)

 = mapFilterFold (/ sum1)

 (> 0) (+) 0 xs -- loop 2

nor2 = map (/ sum2) xs -- loop 3

Finished

sum1 = fold (+) 0 xs -- loop 1

(nor1, sum2)

 = mapFilterFold (/ sum1)

 (> 0) (+) 0 xs -- loop 2

nor2 = map (/ sum2) xs -- loop 3

Multiple choices

• What if we applied the fusion rules in a different
order?

• There are far too many to try all of them, but…

Order matters

sum1 = fold (+) 0 xs -- loop 1

nor1 = map (/ sum1) xs -- loop 2

ys = filter (> 0) xs -- loop 3

sum2 = fold (+) 0 ys -- loop 4

nor2 = map (/ sum2) xs -- loop 5

Order matters

sum1 = fold (+) 0 xs -- loop 1

nor1 = map (/ sum1) xs -- loop 2

sum2 = filterFold

 (> 0) (+) 0 xs -- loop 3

nor2 = map (/ sum2) xs -- loop 5

Order matters

(sum1, sum2) = foldFilterFold

 (+) 0

 (> 0) (+) 0 xs -- loop 1

nor1 = map (/ sum1) xs -- loop 2

nor2 = map (/ sum2) xs -- loop 3

Order matters

(sum1, sum2) = foldFilterFold

 (+) 0

 (> 0) (+) 0 xs -- loop 1

nor1 = map (/ sum1) xs -- loop 2

nor2 = map (/ sum2) xs -- loop 3

Order matters

(sum1, sum2) = foldFilterFold

 (+) 0

 (> 0) (+) 0 xs -- loop 1

(nor1, nor2) = mapMap

 (/ sum1) (/ sum2) xs -- loop 2

Order matters

(sum1, sum2) = foldFilterFold

 (+) 0

 (> 0) (+) 0 xs -- loop 1

(nor1, nor2) = mapMap

 (/ sum1) (/ sum2) xs -- loop 2

Which order?

• Finding the best order is the hard part.

• That’s why we use…

Integer Linear Programming!
Minimise y - x Objective

Subject to 0 ≤ x ≤ 2 Constraints

 0 ≤ y ≤ 2

 x + 2y ≥ 3

Where x : Variables

 y :

Z

Z

Integer Linear Programming!
Minimise y - x Objective

Subject to 0 ≤ x ≤ 2 Constraints

 0 ≤ y ≤ 2

 x + 2y ≥ 3

Where x : = 2 Variables

 y : = 1

Z

Z

Create a graph

sum1 = fold (+) 0 xs

nor1 = map (/ sum1) xs

ys = filter (> 0) xs

sum2 = fold (+) 0 ys

nor2 = map (/ sum2) xs

xs

sum1 = fold (+) 0 xs

nor1 = map (/ sum1) xs

ys = filter (> 0) xs

sum2 = fold (+) 0 ys

nor2 = map (/ sum2) xs

sum1 = fold (+) 0 xs

xs

sum1

sum1 = fold (+) 0 xs

nor1 = map (/ sum1) xs

ys = filter (> 0) xs

sum2 = fold (+) 0 ys

nor2 = map (/ sum2) xs

sum1 = fold (+) 0 xs

nor1 = map (/ sum1) xs

xs

sum1

nor1

sum1 = fold (+) 0 xs

nor1 = map (/ sum1) xs

sum2 = fold (+) 0 ys

nor2 = map (/ sum2) xs

sum1 = fold (+) 0 xs

nor1 = map (/ sum1) xs

ys = filter (> 0) xs

xs

sum1

nor1

ys

ys = filter (> 0) xs

sum1 = fold (+) 0 xs

nor1 = map (/ sum1) xs

nor2 = map (/ sum2) xs

sum1 = fold (+) 0 xs

nor1 = map (/ sum1) xs

sum2 = fold (+) 0 ys

xs

sum1

nor1

ys

sum2

ys = filter (> 0) xs

sum1 = fold (+) 0 xs

nor1 = map (/ sum1) xs

nor2 = map (/ sum2) xs

sum1 = fold (+) 0 xs

nor1 = map (/ sum1) xs

sum2 = fold (+) 0 ys

xs

sum1

nor1

ys

sum2

nor2

nor2 = map (/ sum2) xs

xs

sum1

nor1

ys

sum2

nor2

Different size loops

|xs| |xs|

|ys|

|xs| |xs|

xs

sum1

nor1

ys

sum2

nor2

Different size loops

|xs| |xs|

|ys|

|xs| |xs|

xs

sum1

nor1

ys

sum2

nor2

Different size loops

|xs| |xs|

|ys|

|xs| |xs|

Filter constraint
Minimise …

Subject to …

 f(sum1, ys) ≤ f(sum1, sum2)

 f(sum2, ys) ≤ f(sum1, sum2)

!

 f(a,b) = 0 iff a and b are fused together

Objective function

xs

sum1

nor1

ys

sum2

nor2

xs

sum1

nor1

ys

sum2

nor2

100

xs

sum1

nor1

ys

sum2

nor2

100

1

xs

sum1

nor1

ys

sum2

nor2

100

1

xs

sum1

nor1

ys

sum2

nor2

100

1

100

xs

sum1

nor1

ys

sum2

nor2

100

1

100

100

xs

sum1

nor1

ys

sum2

nor2

100

1

100

100

100

xs

sum1

nor1

ys

sum2

nor2

100

1

100

100

100
1

xs

sum1

nor1

ys

sum2

nor2

100

1

100

100

100
1

100

Objective function

Minimise 100f(sum1, ys) + 1f(sum1, sum2)

 + 100f(sum1, nor2) + 100f(ys, sum2)

 + 100f(ys, nor1) + 1f(sum2, nor1)

 + 100f(nor1, nor2)

Cyclic clusterings
cannot be executed

xs

sum1

nor1

ys

sum2

nor2

Non-fusible edge
xs

sum1

nor1

ys

sum2

nor2

o(sum1) < o(nor1)

Non-fusible edge

Fusible edge
xs

sum1

nor1

ys

sum2

nor2

if f(ys, sum2) = 0

then o(ys) = o(sum2)

else o(ys) < o(sum2)

Fusible edge

1f(ys,sum2) ≤ o(sum2) - o(ys) ≤ 100f(ys, sum2)

Fusible edge

1f(ys,sum2) ≤ o(sum2) - o(ys) ≤ 100f(ys, sum2)

0 ≤ o(sum2) - o(ys) ≤ 0

 o(sum2)=o(ys)

Fusible edge - fused

1f(ys,sum2) ≤ o(sum2) - o(ys) ≤ 100f(ys, sum2)

1 ≤ o(sum2) - o(ys) ≤ 100

 o(sum2)>o(ys)

Fusible edge - unfused

No edge
xs

sum1

nor1

ys

sum2

nor2

No edge

if f(sum1, ys) = 0

then o(sum1) = o(ys)

-100f(sum1, ys) ≤ o(ys) - o(sum1) ≤ 100f(sum1, ys)

No edge

-100f(sum1, ys) ≤ o(ys) - o(sum1) ≤ 100f(sum1, ys)

 0 ≤ o(ys) - o(sum1)≤ 0

 o(ys) = o(sum1)

No edge - fused

-100f(sum1, ys) ≤ o(ys) - o(sum1) ≤ 100f(sum1, ys)

-100 ≤ o(ys) - o(sum1)≤ 100

No edge - unfused

Minimise 100f(sum1, ys) + 1f(sum1, sum2)
 + 100f(sum1, nor2) + 100f(ys, sum2)
 + 100f(ys, nor1) + 1f(sum2, nor1)
 + 100f(nor1, nor2)
Subject to
 f(sum1, ys) ≤ f(sum1, sum2)
 f(sum2, ys) ≤ f(sum1, sum2)
 -100f(sum1, ys) ≤ o(ys) - o(sum1) ≤ 100f(sum1, ys)
 -100f(sum1, sum2) ≤ o(sum2) - o(sum1) ≤ 100f(sum1, sum2)
 1f(ys, sum2) ≤ o(sum2) - o(ys) ≤ 100f(ys, sum2)
 -100f(nor1, nor2) ≤ o(nor2) - o(nor1) ≤ 100f(nor1, nor2)
 o(sum1) < o(nor1)
 o(sum2) < o(nor2)

All together

Result clustering
f(sum1, ys) = 0
f(ys, sum2) = 0
f(sum1, sum2) = 0
!

f(sum1, nor2) = 1
f(ys, nor1) = 1
f(sum2, nor1) = 1
!

f(nor1, nor2) = 0

xs

sum1

nor1

ys

sum2

nor2

• Integer linear programming isn’t as scary as it sounds!

• We can fuse small (<10 combinator) programs in
adequate time

• But we still need to look into large programs

• And we need to support more combinators

• Paper: http://www.cse.unsw.edu.au/~amosr/papers/
robinson2014fusingfilters.pdf

In conclusion

http://www.cse.unsw.edu.au/~amosr/papers/robinson2014fusingfilters.pdf

• Quickhull, Normalize2, Closest points, Quad tree
and other test cases

• GLPK and CPLEX both took < 100ms.

Timing: small programs

• Randomly generated with 24 combinators

• GLPK (open source) took > 20min

• COIN/CBC (open source) took 90s

• CPLEX (commercial) took < 1s!

Timing: large program

References

• Megiddo 1997: Optimal weighted loop fusion for
parallel programs

• Darte 1999: On the complexity of loop fusion

• Lippmeier 2013: Data flow fusion with series
expressions in Haskell

Differences from Megiddo

• With combinators instead of loops, we have more
semantic information about the program.

• Which lets us recognise size-changing operations
like filters, and fuse together.

Future work

• Currently only a few combinators: map, map2, filter,
fold, gather (bpermute), cross product

• Need to support: length, reverse, append,
segmented fold, segmented map, segmented…

