Fusing filters with
Integer Linear Programming

Amos Robinson (that's me!)
Gabriele Keller
Ben Lippmeler

| don't want to write this

DO 10 I = 1, SIZE(XS)
SUM1 = SUM1 + XS(I)
TF (XS(I) .GT. @) THEN
SUM2 = SUM2 + XS(I)
END IF
10 CONTINUE

DO 20 I = 1, SIZE(XS)
NOR1(I) = XS(I) / SUM1
NOR2(I) = XS(I) / SUM2
20 CONTINUE

I'd rather write this

suml = fold (+) © XS
norl = map (/ suml) xs
VS = filter (> 0) XS
sumZ2 = fold (+) O VS
norZ2 = map (/ sum2) Xs

But | also want speeo

* Naive compilation: one loop for each combinator

e \We need fusion!

VS

sumZ

Vertical fusion

filter (> 0) Xxs -- Lloop 3

fold (+) O ys -- loop 4

Vertical fusion

sumZ2 = filterFold

(> 0) (+) 0 Xs -- lLoop 3

Horizontal fusion

norl map (/ suml) xs -- loop Z

sum2 filterFold

(> 0) (+) 0 Xs -- lLoop 3

Horizontal fusion

(norl, suml)
= mapFilterFold (/ suml)

(> 0) (+) 0 Xxs -- loop 2

suml

(norl,

nor2

Finished

fold (+) © XS --
sumZ)

mapFilterFold (/ suml)
(>0) (+) 0 XS --

map (/ sumZ2) Xs --

Loop 1

Loop 2

Loop 3

Multiple choices

 What it we applied the fusion rules in a ditferent
order?

* There are far too many to try all of them, but...

VS

sum’Z

Order matters

filter (> 0) Xxs -- Lloop 3

fold (+) O ys -- loop 4

Order matters

suml fold (+) O Xxs -- loop 1

sum2 = filterFold

(> 0) (+) O Xs -- lLoop 3

Order matters

(suml, sum?2) = foldFilterFold
(+) ©

(> 0) (+) 0 xs -- loop 1

Order matters

norl map (/ suml) xs -- Lloop Z

nor2 map (/ sum2) xs -- loop 3

Order matters

(norl, nor2) = mapMap

(/ suml) (/ sum2) xs -- Lloop 2

Order matters

(suml, sum?2) = foldFilterFold
(+) ©
(> 0) (+) 0 xs -- loop 1
(norl, nor2) = mapMap

(/ suml) (/ sum2) xs -- Lloop 2

Which order?

 Finding the best order is the hard part.

 That's why we use...

Integer Linear Programming!

Minimise y - x Objective

Subjectto O Constraints

IN
>
IN
N

Where X . 7 Variables

Integer Linear Programming!

Minimise y - x Objective

Subjectto O < X < 2 Constraints

Where X | 7 =2 Variables

Create a graph

suml
norl
VS

sumZ2

nor2

fold (+) © XS
map (/ suml) xs
filter (> 0) XS
fold (+) © VS

map (/ sum2) Xxs

XS

d

suml = fold (+) © XS
sum

suml

norl

fold

map

(+) © XS
(/ suml) xs

sum-

XS

suml

norl

VS

fold

map

(+) © XS
(/ suml) xs

filter (> 0) XS

sum-

XS

VS

XS

suml = fold (+) © XS
sum- VS
norl = map (/ suml) xs l
VS = filter (> 0) XS sum?
/
sumZ2 = fold (+) © VS /

suml
norl
VS

sumZ

nor2

fold (+) © XS
map (/ suml) xs
filter (> 0) XS
fold (+) © VS

map (/ sum2) xs

XS

sum VS
sum?2
/
/ /
/
v v
norT norz2

Different size loops

XS

xs| sumf ys |xs
sumz2 |ys|
/
d /
/
Ixs| norf nor2 |[xs|

l |

Different size loops

Ixs| norf nor2 |[xs|

l |

Different size loops

Ixs| norf nor2 |[xs|

l |

Fllter constraint
Minimise
Subjectto ...

f(suml, ys) < f(suml, sum2)

f(sum2,ys) < f(suml, sum2)

f(a,b) =0 iff a and b are fused together

Objective function

XS

sum- VS
sume
/
4 /
/|
norT norz2

Objective function

Minimise 100f(suml, ys) + 1f(suml, sum2)
+ 100f(suml, nor2) + 100f(ys, sum2)
+ 100f(ys, norl) + 1f(sum2, norl)

+ 100fmorl, nor2)

Cyclic clusterings
cannot be executed

XS

Non-fusible edge

XS

Non-fusible edge

o(suml) < o(mnorl)

-usible edge

XS

T :
/
4 /
/
Nnor | \nor2

| |

-usible edge

f f(ys, sum2) =0
then o(ys) = o(sum2)

else o(ys) < o(sum2)

-usible edge

1f(ys,sum2) < o(sum2) - o(ys) < 1001(ys, sum2)

Fusible edge - fused

1f(ys,sum2) < o(sum2) - o(ys) < 1001(ys, sum2)
0 < o(sum2)-o(ys) <0

o(sum2)=0(ys)

Fusible edge - unfuseo

1f(ys,sum2) < o(sum2) - o(ys) < 1001(ys, sum2)
1 < o(sum2) - o(ys) < 100

o(sum2)>o(ys)

NO edge

XS
sumz2
Ve
d /
/
glelg norz

| .

NO edge

f f(suml, ys)=0

then o(suml) = o(ys)

NO edge

-100f(sum1, ys) < o(ys) - o(suml)< 100f(suml, ys)

No edge - fused

-100f(sum1, ys) < o(ys) - o(suml)< 100f(suml, ys)
0 < 0o(ys)- o(suml)< 0

o(ys) = o(suml)

NoO edge - unfused

-100f(sum1, ys) < o(ys) - o(suml)< 100f(suml, ys)

-100 < o(ys)- o(suml)< 100

All togetner

Minimise 100f(suml, ys) + 1f(suml, sum2)
+ 100f(suml, nor2) + 100f(ys, sum2)
+ 100f(ys, norl) + 1f(sum2, norl)
+ 100fmnorl, nor2)
Subject to
f(suml, ys) < f(suml, sum?2)
f(sum2, ys) < f(suml, sum2)

-100f(suml, ys) <o(ys) -o(suml)
-100f(suml, sum2) < o(sum2) - o(suml)
1f(ys, sum2) < o(sum2) - o(ys)

-100f(norl, nor2)< omor2) - o(norl)

VAN

100f(suml, ys)
100f(suml, sum2)
100f(ys, sum2)
100f(morl, nor2)

IN

IN

IN

o(suml) < o(norl)

o(sum2) < o(nhor?2)

Result clustering

ll
O

lsuml, ys)

XS
f(ys, sum2) = 0
f(suml, sum2) = O
f(suml, nor2) = 1
f(ys, norl) =
f(sum2, norl) = 1
fnorl, nor2) = 0

N conclusion

Integer linear programming isn’'t as scary as it sounds!

We can fuse small (<10 combinator) programs in
adequate time

But we still need to look into large programs
And we need to support more combinators

Paper: http://www.cse.unsw.edu.au/~amosr/papers/
robinson2014fusingtilters.pdf

http://www.cse.unsw.edu.au/~amosr/papers/robinson2014fusingfilters.pdf

Timing: small programs

* Quickhull, Normalize2, Closest points, Quad tree
and other test cases

e GLPK and CPLEX both took < 100ms.

T'iming: large program

Randomly generated with 24 combinators
GLPK (open source) took > 20min

COIN/CBC (open source) took 90s

CPLEX (commercial) took < 1s!

References

 Megiddo 1997: Optimal weighted loop fusion for
parallel programs

e Darte 1999: On the complexity of loop fusion

* Lippmeier 2013: Data flow fusion with series
expressions in Haskell

Differences from Megiddo

* With combinators instead of loops, we have more
semantic information about the program.

* Which lets us recognise size-changing operations
iIke filters, and fuse together.

Future work

e Currently only a few combinators: map, mapZ2, filter,
fold, gather (bpermute), cross product

 Need to support: length, reverse, append,
segmented fold, segmented map, segmented...

