

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

A Conclusion on Inheritance Anomaly
Why Inheritance Anomaly Is Not Worth Solving
Gramoli and Santosa, ICOOOLPS ‘14

Andrew E. Santosa
PMTS
Oracle Labs Australia
11 November 2014

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 3

The following is intended for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in
making purchasing decisions. Oracle reserves the right to alter its development plans and practices at
any time, and the development, release, and timing of any features or functionality described in
connection with any Oracle product or service remains at the sole discretion of Oracle. Any views
expressed in this presentation are my own and do not necessarily reflect the views of Oracle.

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Inheritance Anomaly

• Inheritance of concurrent code breaks encapsulation [MY93]

• Solutions never adopted in mainstream languages  Why?

4

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Our Observation

• Reasonable solution makes concurrency control more powerful

– Complexity in checking Liskov-Wing substitutability

• Practitioners avoid the general problem by avoiding implementation
inheritance [Gang of Four]

5

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

public class BBuf {

 protected int state;

 protected static final int EMPTY = 0;

 protected static final int PARTIAL = 1;

 protected static final int FULL = 3;

 public BBuf(int max) { ...

 state = EMPTY; }

 public synchronized void put(Object v)

 throws Exception {

 while (state==FULL) { wait(); }

 ...

 state = (current>=MAX? FULL : PARTIAL);

 notifyAll();

 } ...

}

Example: Java Bounded Buffer

6

• put: Puts object into the
buffer, suspends when
full

• get (not shown):
Retrieves object from
buffer, suspends when
empty

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

public class XBuf2 extends BBuf {

 protected static final int ONE = 4;

 public XBuf2(int max) { super(max) }

 ...

 public synchronized Object[] get2()

 throws Exception {

 while (state==EMPTY||state==ONE) { wait(); }

 ...

 state = (current<=0? EMPTY : PARTIAL);

 notifyAll();

 return ret;

 }

}

Subclassing the Bounded Buffer

7

• get2: Retrieves 2objects
from the buffer, suspends
when full / only one

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

public class XBuf2 extends BBuf {

 protected static final int ONE = 4;

 ...

 public synchronized void put(Object v)

 throws Exception {

 while (state==FULL) { wait(); }

 ...

 state = (current==1? ONE :

 (current>=MAX? FULL : PARTIAL));

 notifyAll();

 }

 ...

}

Subclassing the Bounded Buffer

8

• Requires redefinition of
put, get.

• No encapsulation

• No reusability

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Inheritance Anomaly Solutions

• Increases the power of concurrency control

– Ad-hoc constructs

– Regular expressions

– Temporal logic

• Solutions never adopted in mainstream languages  Why?

9

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

public class NewBBuf extends BBuf {

 sync {

 put: (super.putConstr) &&

 (Previous event==get);

 get: (super.getConstr) &&

 (Previous event==put);

 }

}

Too Much Power?

10

• JEEG as an example

• Elegant solution with
temporal logic

• Deadlock introduced:
superclass behavior not
preserved

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Formal Model of Concurrent Code Inheritance

• Based on NFA

• Not anomalous wrt. all three inheritance anomaly examples in [MY93]

11

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Formal Model of Concurrent Code Inheritance

12

• Superclass behavior

• Interface extension

• Behavior restriction

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Formal Model of Concurrent Code Inheritance

13

• Superclass behavior

• Interface extension

• Behavior restriction

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Formal Model of Concurrent Code Inheritance

14

• Superclass behavior

• Interface extension

• Behavior restriction X

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Formal Model of Concurrent Code Inheritance

15

• Superclass behavior

• Interface extension

• Behavior restriction

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Anomaly Freedom

16

• A language is anomaly
free iff any subtyping is
implementable via
incremental inheritance
[CRR98]

• Incremental inheritance:
Not redefining methods

SUPERTYPE

SUBTYPE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Problem of Anomaly Freedom (Theorem)

17

• In an anomaly free
language, we need to
model check to ensure
behavior preservation
(PSPACE hard)

• Behavior preservation
[CRR98] ensures Liskov-
Wing substitutability

SUPERTYPE

SUBTYPE

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Inheritance Anomaly as Fragile Base Class Problem

• Tight coupling between subclass and superclass

• Fragile base class solved by programming practice: program to the interface
[Gang of Four]

• As much as possible, we implement concurrency at the bottom of the
inheritance hierarchy

18

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Conclusion

• Should we still design the next anomaly-free language?

• Hard to ensure subclass objects substitute parent class objects

• For now, this is already tackled by avoiding implementation inheritance

19

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

References

• [MY93] S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in
object-oriented concurrent programming languages. In Research directions
in concurrent object-oriented programming, pages 107–150. MIT Press,
1993.

• [CRR98] L. Crnogorac, A. S. Rao, and K. Ramamohanarao. Classifying
inheritance mechanisms in concurrent object oriented programming. In
12th ECOOP, pages 571–600. Springer, 1998.

20

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 21

