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Inheritance Anomaly 

 

• Inheritance of concurrent code breaks encapsulation [MY93] 

 

• Solutions never adopted in mainstream languages  Why? 
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Our Observation 

 

• Reasonable solution makes concurrency control more powerful 

– Complexity in checking Liskov-Wing substitutability 

 

• Practitioners avoid the general problem by avoiding implementation 
inheritance [Gang of Four] 
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public class BBuf { 

 protected int state; 

 protected static final int EMPTY = 0; 

 protected static final int PARTIAL = 1; 

 protected static final int FULL = 3; 

 public BBuf(int max) { ... 

  state = EMPTY; } 

 public synchronized void put(Object v) 

  throws Exception { 

  while (state==FULL) { wait(); }  

  ... 

  state = (current>=MAX? FULL : PARTIAL); 

  notifyAll(); 

 } ... 

} 

Example: Java Bounded Buffer 
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• put: Puts object into the 
buffer, suspends when 
full  

 

• get (not shown): 
Retrieves object from 
buffer, suspends when 
empty 
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public class XBuf2 extends BBuf { 

 protected static final int ONE = 4; 

 public XBuf2(int max) { super(max) } 

 ... 

 public synchronized Object[] get2() 

  throws Exception { 

  while (state==EMPTY||state==ONE) { wait(); } 

  ... 

  state = (current<=0? EMPTY : PARTIAL); 

  notifyAll(); 

  return ret; 

 } 

} 

Subclassing the Bounded Buffer 
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• get2: Retrieves 2objects 
from the buffer, suspends 
when full / only one 
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public class XBuf2 extends BBuf { 

 protected static final int ONE = 4; 

 ... 

 public synchronized void put(Object v) 

  throws Exception { 

  while (state==FULL) { wait(); }  

  ... 

  state = (current==1? ONE : 

   (current>=MAX? FULL : PARTIAL)); 

  notifyAll(); 

 } 

 ... 

} 

Subclassing the Bounded Buffer 
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• Requires redefinition of 
put, get. 

 

• No encapsulation 

 

• No reusability 
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Inheritance Anomaly Solutions 

 

• Increases the power of concurrency control 

– Ad-hoc constructs 

– Regular expressions 

– Temporal logic 

 

• Solutions never adopted in mainstream languages  Why? 
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public class NewBBuf extends BBuf { 

 sync { 

  put: (super.putConstr) && 

   (Previous event==get); 

  get: (super.getConstr) && 

   (Previous event==put); 

 } 

} 

Too Much Power? 
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• JEEG as an example 

 

• Elegant solution with 
temporal logic 

 

• Deadlock introduced: 
superclass behavior not 
preserved 
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Formal Model of Concurrent Code Inheritance 

 

• Based on NFA 

 

• Not anomalous wrt. all three inheritance anomaly examples in [MY93] 
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Formal Model of Concurrent Code Inheritance 
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• Superclass behavior 

• Interface extension 

• Behavior restriction 
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Formal Model of Concurrent Code Inheritance 
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Formal Model of Concurrent Code Inheritance 
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• Superclass behavior 

• Interface extension 

• Behavior restriction X 
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Formal Model of Concurrent Code Inheritance 
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• Superclass behavior 

• Interface extension 

• Behavior restriction 
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Anomaly Freedom 
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• A language is anomaly 
free iff any subtyping is 
implementable via 
incremental inheritance 
[CRR98] 

 

• Incremental inheritance: 
Not redefining methods 

SUPERTYPE 

SUBTYPE 
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Problem of Anomaly Freedom (Theorem) 
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• In an anomaly free 
language, we need to 
model check to ensure 
behavior preservation 
(PSPACE hard) 

 

• Behavior preservation 
[CRR98] ensures Liskov-
Wing substitutability 

SUPERTYPE 

SUBTYPE 
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Inheritance Anomaly as Fragile Base Class Problem 

 

• Tight coupling between subclass and superclass 

 

• Fragile base class solved by programming practice: program to the interface 
[Gang of Four] 

 

• As much as possible, we implement concurrency at the bottom of the 
inheritance hierarchy 
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Conclusion 

 

• Should we still design the next anomaly-free language? 

 

• Hard to ensure subclass objects substitute parent class objects 

 

• For now, this is already tackled by avoiding implementation inheritance 
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