

A Relational Definition of flow-sensitive May-Happen-in-Parallel Analysis

I. Hayes, D. Wainwright, K. Winter, C. Zhang

School of ITEE, The University of Queensland, Brisbane, Australia Oracle Labs, Brisbane, Australia

Brisbane November 2014

Parallelism

Abstraction

Definition of MHP

Outlook

Analysis of Concurrent Code

May-Happen-in-Parallel (MHP)

Parallelism

Abstraction

Definition of MHP

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outlook

Analysis of Concurrent Code

May-Happen-in-Parallel (MHP)

 determines pairs of program locations that are potentially in parallel

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Analysis of Concurrent Code

May-Happen-in-Parallel (MHP)

- determines pairs of program locations that are potentially in parallel
- increase precision

Variables

Points-to Analysis

Parallelism Context Abstraction Definition of MHP Outlook Analysis of Concurrent Code May-Happen-in-Parallel (MHP) determines pairs of program locations MHP that are potentially in parallel increase precision reduce complexity Shared Locksets Variables

Points-to Analysis

Points-to Analysis

Points-to Analysis

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

relational → Datalog specification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Context	Parallelism	Abstraction	Definition of MHP	Outlook
Paralle	I Execution			
	main			

Context	Parallelism	Abstraction	Definition of MHP	Outlook
Parallel I	Execution			

h

fork

first common ancestor $fca(n, n') \in N^{fork}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Abstraction

Definition of MHP

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Outlook

Four Types of MHP

Descendant MHP

• Sibling MHP

Parallelism

Abstraction

Definition of MHP

Outlook

Four Types of MHP

- Descendant MHP
 direct
- Sibling MHP

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Context Parallelism Abstraction Definition of MHP Outlook
Four Types of MHP

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Abstraction

Definition of MHP

Four Types of MHP

Parallelism

Abstraction

Definition of MHP

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outlook

Four Types of MHP

Context Parallelism Abstraction Definition of MHP Outlook

Control Flow Graph

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

 $\begin{array}{rcl} \textit{Fork}_t &=& \{(n,g) \in N \times \textit{F} | \textit{label}(n) = t \leftarrow \textit{fork } g \} \\ \textit{Fork} &=& \bigcup_t \textit{Fork}_t \end{array}$

Relational Composition

with $R \subseteq A \times B$ and $S \subseteq B \times C$ and $Q \subseteq A \times C$

$$\begin{array}{l} R \ {}_{9}^{\circ} \ S = \{(a,c) \in A \times C \mid \exists b \cdot (a,b) \in R \land \ (b,c) \in S\} \\ R^{\sim} = \{(b,a) \mid (a,b) \in R\} \\ R \mid\mid Q = \{(b,c) \in B \times C \mid \exists a \cdot (a,b) \in R \land \ (a,c) \in Q\} \\ = R^{\sim} \ {}_{9}^{\circ} \ Q \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

with $R \subseteq A \times B$ and $S \subseteq B \times C$ and $Q \subseteq A \times C$

$$\begin{array}{l} R \ {}_{9}^{\circ} \ S = \{(a,c) \in A \times C \mid \exists b \cdot (a,b) \in R \land \ (b,c) \in S\} \\ R^{\sim} = \{(b,a) \mid (a,b) \in R\} \\ R \mid\mid Q = \{(b,c) \in B \times C \mid \exists a \cdot (a,b) \in R \land \ (a,c) \in Q\} \\ = R^{\sim} \ {}_{9}^{\circ} \ Q \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

$$NF \in N \rightarrow F$$

 $Call = \{(n, f) \in N \times F | label(n) = call f\}$

with $R \subseteq A \times B$ and $S \subseteq B \times C$ and $Q \subseteq A \times C$

$$\begin{array}{l} R \ {}_9^{\circ} \ S = \{(a,c) \in A \times C \mid \exists b \cdot (a,b) \in R \land \ (b,c) \in S \} \\ R^{\sim} = \{(b,a) \mid (a,b) \in R \} \\ R \mid\mid Q = \{(b,c) \in B \times C \mid \exists a \cdot (a,b) \in R \land \ (a,c) \in Q \} \\ = R^{\sim} \ {}_9^{\circ} \ Q \end{array}$$

$$NF \in N \to F$$

Call =
$$\{(n, f) \in N \times F | label(n) = call f\}$$

 $\begin{array}{lll} \textit{FCall} &= \textit{NF}^{\sim} \ \ _{9}^{\circ} \ \textit{Call} & \textit{F} \times \textit{F} \\ \textit{FFork} &= \textit{NF}^{\sim} \ \ _{9}^{\circ} \ \textit{Fork} & \textit{F} \times \textit{F} \\ \textit{FCallFork} &= \textit{FCall} \cup \textit{FFork} & \textit{F} \times \textit{F} \end{array}$

with $R \subseteq A \times B$ and $S \subseteq B \times C$ and $Q \subseteq A \times C$

$$\begin{array}{l} R \ {}_{9}^{\circ} \ S = \{(a,c) \in A \times C \mid \exists b \cdot (a,b) \in R \land \ (b,c) \in S \} \\ R^{\sim} = \{(b,a) \mid (a,b) \in R \} \\ R \mid\mid Q = \{(b,c) \in B \times C \mid \exists a \cdot (a,b) \in R \land \ (a,c) \in Q \} \\ = R^{\sim} \ {}_{9}^{\circ} \ Q \end{array}$$

 $NF \in N \rightarrow F$

Call = {
$$(n, f) \in N \times F | label(n) = call f$$
}

 $\begin{array}{lll} FCall &= NF^{\sim} \ \ _{9}^{\circ} \ Call & F \times F \\ FFork &= NF^{\sim} \ \ _{9}^{\circ} \ Fork & F \times F \\ FCallFork &= FCall \cup FFork & F \times F \end{array}$

FCallFork* (Call Graph)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Parallelism

Abstraction

Definition of MHP

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outlook

Direct Descendant MHP

Parallelism

Abstraction

Definition of MHP

Outlook

Direct Descendant MHP

 $FMHP_t = Fork_t \ {}^\circ_{9} FCallFork^* \ {}^\circ_{9} NF^{\sim}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Parallelism

Abstraction

Definition of MHP

Outlook

Direct Descendant MHP

 $FMHP_t = Fork_t \ {}_9^\circ FCallFork^* \ {}_9^\circ NF^{\sim}$

 $directDMHP_t = NoJ_t || FMHP_t$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Parallelism

Abstraction

Definition of MHP

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outlook

Direct Sibling MHP

directSMHP_t = NoJ_t G CallFork G FCallFork* O NF \sim || FMHP_t

Parallelism

Abstraction

Definition of MHP

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outlook

Direct Sibling MHP

directSMHP_t = NoJ_t G CallFork G FCallFork* O NF \sim || FMHP_t

Parallelism

Abstraction

Definition of MHP

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outlook

Indirect Descendant MHP

indirectDMHP_t =

 $NoJ_t \ \ At(exit) \ \ NF \ \ FCallFork^{*} \ \ CallFork^{\circ} \ \ E^* \ || \ FMHP_t$

Parallelism

Abstraction

Definition of MHP

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outlook

Indirect Descendant MHP

indirectDMHP_t =

 $NoJ_t \ \ At(exit) \ \ NF \ \ FCallFork^{*} \ \ CallFork^{\circ} \ \ E^* \ || \ FMHP_t$

Parallelism

Abstraction

Definition of MHP

Outlook

Indirect Sibling MHP

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Parallelism

Abstraction

Definition of MHP

Outlook

Indirect Sibling MHP

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Definition of MHP

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outlook

- Definiton of May-Happen-in-Parallel:
 - as Relations
 - (non-relational)

Abstraction

Definition of MHP

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outlook

- Definiton of May-Happen-in-Parallel:
 - as Relations
 - (non-relational)
- Datalog implementation

Abstraction

Definition of MHP

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outlook

- Definiton of May-Happen-in-Parallel:
 - as Relations
 - (non-relational)
- Datalog implementation
- Compare with current implementation

Abstraction

Definition of MHP

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outlook

- Definiton of May-Happen-in-Parallel:
 - as Relations
 - (non-relational)
- Datalog implementation
- Compare with current implementation
- Adapt relational definitions to improve efficiency

Abstraction

Definition of MHP

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outlook

- Definiton of May-Happen-in-Parallel:
 - as Relations
 - (non-relational)
- Datalog implementation
- Compare with current implementation
- Adapt relational definitions to improve efficiency
- Improve other work on data races using Datalog (e.g, [Naik, Aiken, Whaley, PDLI'06])

Abstraction

Definition of MHP

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outlook

- Definiton of May-Happen-in-Parallel:
 - as Relations
 - (non-relational)
- Datalog implementation
- Compare with current implementation
- Adapt relational definitions to improve efficiency
- Improve other work on data races using Datalog (e.g, [Naik, Aiken, Whaley, PDLI'06])
- Lockset and Shared Variable Analysis
- Points-to Analysis