
Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

A Hybrid Approach to
Memory Safety of C Programs

Chenyi Zhang

Oracle Labs Australia
24 November 2014

Oracle Confidential – Internal/Restricted/Highly Restricted 1

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Outline

Introduction

Prototype Architecture

Performance

Future Work

1

2

3

4

Oracle Confidential – Internal/Restricted/Highly Restricted 2

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Introduction

 char *ptr = malloc(6);

 strcpy(ptr, “Hello!”); // overflows heap allocation

 float f = 3.14;

 char *ptr = *(char **)&f; // weak type control

 ptr[0] = ‘c’; // illegal write to memory

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Introduction

 char *ptr = malloc(5);

 char *ptr2 = ptr;

 …

 free(ptr2); // heap allocation “malloc(5)” is deallocated

 …

 ptr[0] = 'c';

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

• Types of safety violations in C
• Use after free (Stale pointers, temporal violation)

• Buffer overflow (spatial violation)

• Illegal access to system memory (spatial violation)

• Not including
• Memory leak

• Integer overflow

• Use of unitialized memory

Oracle Confidential – Internal

Introduction

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Prototype Architecture

Oracle Confidential – Internal/Restricted/Highly Restricted 6

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Prototype Architecture

Oracle Confidential – Internal/Restricted/Highly Restricted 7

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Long Pointer

Oracle Confidential – Internal/Restricted/Highly Restricted 8

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Sandbox API functions

• Allocations and frees: update metadata (swizzle)

• Pointer uses as dereference and as data: check against
metadata (unswizzle)

• Pointer stores: escape pointer from Sandbox while
retaining associated metadata (escape)

• Pointer loads: sanitize pointer for Sandbox by
reestablishing metadata association (sanitize)

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Prototype Architecture: Static Analysis
• LLVM based “link-time,” inter-procedural, flow-insensitive value-

flow analysis of interesting values:

– Memory allocations & free

– Memory accesses, i.e. pointer dereferences (unswizzle)

– Other uses of pointers as data (escape)

– Pointer stores (escape) and loads (sanitize)

• Additional passes to remove annotations

– Do not check safe accesses (removing swizzle and unswizzle)

– Store and load long pointers (removing escape and sanitize)

.bc with

annotations

Value Flow

based

Static

Analysis

.bc

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Prototype Architecture: Instrumentation

• Instrumentation

– Inject Sandbox API calls based on annotations from static analysis

– Gather global variables information and hijack the main() function

libs

libsandbox.so

instrumented

executable

Instrumenter

and Code

Generator

.bc with

annotations

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Sandbox Performance
71% to 280% overhead

Oracle Confidential – Internal/Restricted/Highly Restricted 12

0

5

10

15

20

25

30

35

40

45

50

bzip2 mcf hmmer sjeng milc lbm

native

full annotation

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Literature

• Fat pointers (PLDI’94)

• Source level transformation

• typedef {

 <type> *value;

 <type> *base;

 unsigned size;

 int capability;

} SafePtr<type>;

• Need to update pointers with realloc()

• Runtime overhead 130% to 540%

Oracle Confidential – Internal/Restricted/Highly Restricted 13

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Literature

• Softbound/CETS (PLDI’09, ISMM’10)

• Compiler time instrumentation

• Disjoint pointer meta-data value

• No problem with realloc() due to SSA

• Cumbersome at callsites

• 116% total runtime overhead reported

• Intel Memory Protection Extension (MPX) – released 2013

• Hardware implementation of Softbound

• bound registers and new instructions

• Low overhead (~10%)

Oracle Confidential – Internal/Restricted/Highly Restricted 14

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. |

Future Challenges

• Multi-thread support

– Atomic load and store of long pointer values

– Thread-safe access on shared meta-data entries

• Closed world
– Libc included in our analysis

– Remove most sandbox API calls to escape and sanitize long
pointers

Oracle Confidential – Internal/Restricted/Highly Restricted 15

