

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

A Study on Dynamic Analysis and Penetration
Testing Tools for Web Applications

Behnaz Hassanshahi

Postdoctoral Researcher

Oracle Labs Australia

November 2016

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement
The following is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. Oracle reserves the right to alter its
development plans and practices at any time, and the development, release, and timing
of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Motivation

Overview

Web Application Analyzers

Research Opportunities & Conclusion

1

2

3

4

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

The ease of use and wide availability of web attack toolkits is feeding the number
of web attacks, which is doubled in 2015.

5

Symantec Internet Security
Threat Report, 2016

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Finding Security-Critical Vulnerabilities in Web Apps

• Injection vulnerabilities are serious
– 78% of websites are vulnerable to injection attacks [Symantec’16]

– E.g., millions of Wix.com websites vulnerable in Nov 2016
– E.g., 13 injection vulnerabilities in Joomla in the past 2 years

• Example injection attacks: XSS, SQLi
• Why client-side code?
• Why JavaScript?

Motivation

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Key Challenges in Analyzing JavaScript

• Event driven
• User interactive
• String intensive
• An untyped language
• That’s why dynamic analysis makes sense!

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Dynamic Analysis Needs Inputs

• Test case generation for
programming errors

– Improve coverage
– More suitable for developers

8

Focus of Our Study

• Exploit generation
– Exploits need more domain knowledge
– Zero-day exploits can have complex

patterns
– Additional validation for confirmation

required
– Less dependent on the developers

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Input Generation for JavaScript

• Value space
– Less user interaction
– Focus of web security toolkits
– Easier to find => more security critical

9

• Event space
– Finding programming bugs
– More automation
– Improves coverage
– Mostly studied in research papers

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

White-box vs Black-box Fuzzing

• Some people call test generators, fuzzers!
• White-box

– Analyzes the source code e.g., dynamic symbolic execution
– Better coverage, more automated

• Black-box
– No source-code analysis
– Light-weight, suitable for low hanging fruits

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

White-box vs Black-box Fuzzing

• Some people call test generators, fuzzers!
• White-box

– Analyzes the source code e.g., dynamic symbolic execution
– Better coverage, more automated

• Black-box
– No source-code analysis
– Light-weight, suitable for low hanging fruits

11

• Research Problem: finding the sweet spot
– High coverage, light-weight, automatic

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Research Prototypes

12

Crawljax

Artemis
Jalangi

ConFix

Webmate

SymJS Crowdie

Coverage

Finding Vulnerabilities

Black-box Fuzzing

White-box Fuzzing

Kudzu
DexterJS

SAP Flax

KameleonFuzz

Linvail

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Research Prototypes

13

Crawljax

Artemis
Jalangi

ConFix

Webmate

SymJS Crowdie

Coverage
Black-box Fuzzing

White-box Fuzzing

Kudzu
DexterJS

SAP Flax

KameleonFuzz

Available

Finding Vulnerabilities

Linvail

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Penetration Testing Tools

14

Coverage

Finding Vulnerabilities

Crawlers

JBroFuzzWapiti

Intruder
ZAP

Skipfish

W3af

Scrapy

Black-box Fuzzers

Available

OpenWebSpider

Spider
Paros

Acunetix WVS

Grendel-Scan

Xenotix
XSSER

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Literature Review

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Exploit Generation

• Goal
– Confirming security vulnerabilities

Literature Review

16

• Scalability
– Can test thousands of websites, more suitable for shallow vulnerabilities [Parameshwaran

et al., FSE’15], [Lekies et al., CCS’13]

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Exploit Generation

• Flax [Saxena et al., NDSS’10], SAP [Lekies et al., CCS’13], DexterJS [Parameshwaran et al., FSE’15]

• How do they work?
1) Test harness, crawling to run
2) Propagating taints from sources to sinks
3) Logging useful information e.g., sink type, context, built-in filters
4) Exploit generation: existing attack vectors/payloads + taint flows + meta data
5) Exploit validation

• Need initial inputs

Based on Dynamic Taint Tracking

17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Exploit Generation

• Kudzu [Saxena et al., SP’10]
– Main focus on complex string operations
– Finds client-side injection vulnerabilities
– No need for initial test harness

• How does it work?
1) Random GUI exploration to generate event sequences
2) Recording an execution trace of the program with concrete inputs
3) Symbolic execution on the trace
4) Generating new input values and executing them with same event sequences
5) Goes to 2

• Scalability: only tested on few apps, not clear

Based on Symbolic Execution

18

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Test Case Generation
Literature Review

19

• Goal
– Finding programming errors with good coverage

• Scalability
– Test few apps with high coverage [Artzi et al., ICSE’11], [Sen et al., ESEC/FSE’13], [Li et al.,

FSE’14], [Christophe et al., SANER’16]

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Test Case Generation

• Artemis [Artzi et al., ICSE’11]
– Focuses on event-driven aspect of JavaScript
– Improving coverage

• How does it work?
1) Starts with random events
2) Observes the effect and generates new inputs

● Explores new paths
● Several prioritization rules

3) Runs the input and goes to 2

Random Testing

20

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Test Case Generation

• Crawljax [Mesbah et al., ICWE’08]
– Focuses on AJAX-based apps
– Improves event coverage

• How does it work?
1) The robot simulates user actions, e.g., clicks and text input
2) Updates state-flow graph of the application
3) Generates a static page
4) Explores all clickable elements
5) Runs and goes to 2

• Complicated, might not be stable in practice

Model-based Testing

21

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Test Case Generation

• Jalangi [Sen et al., ESEC/FSE’13], SymJS [Li et al., FSE’14]

• How do they work?
1) Start with random event and data inputs
2) Collect paths constraints, flip a condition to generate new input
3) Run the input and go to 2

• Jalangi based on record-replay is not supported anymore
• SymJS tested on few apps and not available

Symbolic Execution

22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Technical Challenges

• Browser-based
– Advantages: fast
– Disadvantages: compatibility
– Examples: Artemis [Artzi et al., ICSE’11] , SAP [Lekies et al., CCS’13]

• Source-to-source rewriting
– Advantages: compatibility
– Disadvantages: slow, possible to change the semantics
– Examples: Jalangi [Sen et al., ESEC/FSE’13], DexterJS [Parameshwaran et al., FSE’15], Linvail

[Christophe et al., SANER’16]

23

Instrumentation

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Tool Source
code

bug Security
Vulnerability

Focus Technique Available Organisation

Kudzu JS - DOM-based
XSS

Structured
inputs

Dynamic symbolic
execution

no UC Berkeley
Oakland 2010

Artemis JS Runtime
errors

- Coverage Feedback-
directed event

sequence
generation

yes Aarhus
University,

originally by
IBM

 ICSE 2011

Jalangi JS Undefined
origin, etc.

- Instrumentation Source-to-source
rewriting to

provide callbacks
for analysis

yes UC Berkeley,
Samsung

ESEC/FSE
2013

SymJS JS - - Coverage Symbolic
execution

no Fujitsu
FSE 2014

DexterJS JS - DOM-based
XSS

Exploit
generation

Crawling+
instrumentation+

taint tracking

no NUS, Acquired
by Intel
2015

Linvail JS NaN, etc. - Instrumentation Shadow execution Yes Vrije
Universiteit
Brussel

SANER 2016

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Some Free Penetration Testing Tools

25

Burp Suite

ZAP

w3af

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Free Black-box Fuzzers

• Leverage a database of known exploit payloads
• Start by crawling the target web application
• Identify reachable entry points
– Enumerating all e.g., URL parameters, input fields, cookies
– Manual selection

• Generate and execute (mutations of) input strings based on the payloads

• Analyze the HTTP responses for keywords and patterns

How do they work?

26

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Free Black-box Fuzzers

• XSS Peeker (Bazzoli et al., IFIP’16)
 evaluates fuzzers

– Redundant payloads
– Problems in validation
– Lack of feedback

Observations

27

• Crawlers not effective at following links through active content technologies
[Bau et al., S&P’10]

• Not there yet for automatic vulnerability detection!

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 28

Tool Security
Vulnerability

Focus Technique Available Organisation

Burp Suite SQL injection, XSS,
etc.

Scanning,
exploit

generation
etc.

Crawling+Mutating
over a set of known

inputs

Yes, trial PortSwigger Web
Security

JBroFuzz SQL injection, XSS,
buffer overflow, etc.

Fuzzing
existing
inputs

Mutating over a set
of known inputs

Yes OWASP

ZAP SQL injection, XSS,
etc.

Scanning,
exploit

generation
etc.

Mutating over a set
of known inputs

Yes OWASP

Paros Proxy SQL injection, XSS,
etc.

Editing/viewi
ng HTTP(S)
messages,

fuzzing

Crawling+Mutating
over a set of known

inputs

Yes -

w3af SQL injection, XSS,
etc.

Editing/viewi
ng HTTP(S)
messages,

fuzzing

Crawling+Mutating
over a set of known

inputs

Yes -

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Observations

• It is important to design an analysis with security problems in mind
– Finding opportunities to improve scalability e.g., several optimizations through staged analysis
– Avoid collecting unnecessary information e.g., slicing
– Avoid missing useful information e.g., precise string analysis
– That’s why web toolkits are widely used!

• Scaling coverage-based techniques for security to achieve automation
• Analyzing client + server side code for deeper vulnerabilities
• More intelligent fuzzers

– Feedback-directed

29

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Conclusion

• There is a gap between research prototypes and web scanning tools
• Fuzzers are highly dependent on known payloads and manual effort
• Research tools are mostly focused on programming errors and coverage

• What to do next?
– Adapting coverage-based techniques for security problems

● High coverage
● More automation
● Deeper vulnerabilities

30

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Thanks

E-mail: behnaz.hassanshahi@oracle.com

31

	Slide 1
	Slide 2
	Slide 3
	Program Agenda
	Title, Subtitle, and Content Layout
	Slide 6
	Slide 7
	Two Content Layout
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

