
Hybrid STM/HTM for Nested
Transactions on OpenJDK

Keith Chapman
Purdue U

Tony Hosking
ANU/Data61, Purdue U

Eliot Moss
UMass

Motivation
STM has been around for ages

• But STM is slow

Commodity hardware for transactions available now

• But HTM approaches are only best effort

Out goal: Accelerate STM with HTM when possible

Transactions are Good
They deal with concurrency

• Atomic transactions avoid problems with locks

Deadlock, wrong lock, priority inversion, etc.

Transactions are Good
They deal with concurrency

• Atomic transactions avoid problems with locks

Deadlock, wrong lock, priority inversion, etc.

They handle recovery

• Retry in case of conflict

• Cleanup in face of exceptions/errors

Transactions are Good
They deal with concurrency

• Atomic transactions avoid problems with locks

Deadlock, wrong lock, priority inversion, etc.

They handle recovery

• Retry in case of conflict

• Cleanup in face of exceptions/errors

More practical for ordinary programmers than locks for robust concurrent systems

Semantics of Transactions
Offer A, C, I of database ACID properties:

• Atomicity: all or nothing

• Consistency: single global order

• Isolation: intermediate states invisible

In sum, serialisability, in face of concurrent execution and transaction failures.

Can be provided by Transactional Memory

• Hardware, software, or hybrid

Simple Transactions for Java
Following Harris and Fraser, we offer:

atomic	{	S	}	

• Atomic: Execute S entirely or not at all

• Isolated: No other atomic action can see state in the middle, only before S or
after S

• Consistent: All other atomic actions happen logically before S or after S	

Implement with read/write locking/logging, on words or whole objects; optimistic,
pessimistic, etc.

A Basic Software Implementation
• Each transaction has an associated log

• Add a version number / owner to each object

• Each read records (read, object, version) in the log

• Each write causes this transaction to try to become the object’s
owner (use compare-and-swap or similar); records (write, object,
version) in the log

• Each write records (object, field, old-value) in the log

Basic Implementation: commit/abort
Commit

• May commit if each object read has same version or is owned by this
transaction

• Commit increments version number of each object owned by this
transaction

Failure / abort:

• Apply write log entries in reverse order

• Release ownership of objects, restoring original version number

Basic Implementation: properties
Reads are optimistic: record version number and validate at the end;
avoids writes/locks on the object itself.

Writes are pessimistic: grab “lock” eagerly.

Update-in-place writing strategy

implying undo log failure strategy

Why is this better than locking?
Abstract: Expresses intent without ever over- or under-specifying how to
achieve it: correct

Allows unwind and retry: More flexible response to conflict: prevents
deadlock

Allows priority without deadlock: Avoids priority inversion (still need to
avoid livelock)

Allows more concurrency: synchronises on exact data accessed rather
than an object lock* … and distinguishes reads and writes

*The basic strategy is intermediate in granularity

Limitations of Simple Transactions

Long/large transactions either reduce concurrency or are unlikely to
commit.

Data structures often have false conflicts

e.g., reorganising tree nodes

Closed Nesting
[Moss’81]

Each sub-transaction builds its own read/write set.

On commit, merge with its parent’s sets.

On abort, discard its set.

Sub-transaction never conflicts with ancestors

• Conflicts with non-ancestors

• Can see ancestors’ intermediate state, etc.

Requires keeping values at each nesting level that writes a data item.

Closed Nesting Helps: partial rollback

When actions conflict, one will be rolled back.

With closed nesting, roll back only up through the youngest conflicting
ancestor.

This reduces the amount of work that must be redone when retrying.

Limitations of Closed Nesting
Limitations derive from the original non-nested semantics:

• Aggregates larger and larger conflict sets

• Still hard to complete long/large transactions

• Synchronises at physical level

• Gives false conflicts

Open Nesting to the Rescue

Concept and theory developed in the late 1980s

• Comes from the database community

• Partly an explanation/justification of certain real strategies
employed in database systems

• Partly an approach to generalising those strategies

Conceptual Backdrop of Open Nesting
Closed nesting has just one level of abstraction:

• Memory contents

• Basis for concurrency control

• Basis for rollback

Open nesting has more levels of abstraction

Each level may have a distinct:

• Concurrency control model (style of locks)

• Recovery model (operations for undoing)

Open Nested Transactions
While running, a leaf open nested action

• Operates at the memory word level

When it commits

• Its memory changes are permanent

• Concurrency control and recovery switch levels

• Give up memory level “locks”, acquire abstract locks

• Give up memory level unwind, use only inverse operations (undos)

Non-Leaf Open Nested Transactions
A non-leaf open nested action operates at the memory word level, and

• May accumulate abstract locks and undos from committed children

When it commits

• Its memory changes are permanent

• Concurrency control and recovery switch levels

• Give up memory level “locks” and child locks, acquire abstract locks

• Give up memory level unwind and child undos, use only inverses (undos)

Abstract Serialisability
Lock parts of abstract state:

• To prevent conflicting forward operations

• To ensure that undo remains applicable

Undo in the abstract:

• Restores changed part of abstract state

Boosting versus Open Nesting
Open nesting is built on top of an assumed TM system (STM or HTM).

Boosting is built on top of assumed “thread-safe” (linearisable) data
types

• Implement insides of a concurrent data structure however you like,
as long as it is concurrency safe

• Make it transactional by wrapping it with abstract locks and
abstract undos

HTM Acceleration
Existing HTM (e.g., Intel TSX) is best-effort flattened transactions.

• Top-level in HTM down through all nested children works.

• Closed nested in HTM for children of STM is not useful:

• Child needs the same STM overhead on behalf of STM ancestors

• Open nested in HTM for children of STM avoids most overhead:

• HTM handles physical conflicts

• Abstract locking / undos handle abstract conflicts

TM Metadata

Txn Log

0 0Version # 0 0 0Txn ID 1

One metadata word for every object

STM Transaction Protocol (Read)

T1 Log

0 00 0

STM Transaction Protocol (Read)

T1 Log

0 00 0

Check Mode

STM Transaction Protocol (Read)

T1 Log

0 0

0 0

T1 Read

STM Transaction Protocol (Read)

T1 Log

0 0

0 0

T1 Validate

STM Transaction Protocol (Read)

T1 Log

0 0

T1 Commit

0 0

STM Transaction Protocol (Write)

T1 Log

0 0

STM Transaction Protocol (Write)

T1 Log

Check Mode

T1 1

0 0

STM Transaction Protocol (Write)

T1 Log

T1 Write

T1 1

0 0

STM Transaction Protocol (Write)

T1 Log

T1 Write

T1 1

0 0

STM Transaction Protocol (Write)

T1 Log

T1 Write

T1 11 0

STM Transaction Protocol (Write)

T1 Log

T1 Commit

0 00 00 0

STM Conflict Detection

T1 Log T2 Log

0 0

0 00 0

STM Conflict Detection

T1 Log T2 Log

T1 Read

0 0

0 0

0 0

T2 1

STM Conflict Detection

T1 Log T2 Log

T2 Write

0 0

0 0

0 0

T2 1

STM Conflict Detection

T1 Log T2 Log

T1 Validate

0 0

0 0

T2 1

STM Conflict Detection

T1 Log T2 Log

T1 Abort

Hybrid Transaction Protocol
Detect HTM-STM conflicts via lock word accesses

• Explicit XABORT if locked by another transaction

• HTM reads — read the metadata word

• STM writes modify the metadata word

• Causes HTM to abort

• HTM writes — increment version number

• Causes STM read invalidation / HTM abort

Abstract Locks for STM

Open / Boosted Atomic Method
Body

Acquire abstract locks

Release abstract locks

If top level transaction

Open / Boosted Atomic Method
Body

Acquire abstract locks

Log abstract locks

If nested transaction

Log undo operations

Abstract Locks for Hybrid TM

Open / Boosted Atomic Method
Body

Validate abstract locks

Open / Boosted Atomic Method
Body

Acquire abstract locks

Log abstract locks

If top level is HTM

Log undo operations

Why Validation Works
HTM–STM

• If abstract locks conflict they must touch some same
physical words in the abstract locking data structure
— otherwise they could not detect the conflict

Open / Boosted Atomic Method
Body

Validate abstract locks

Why Validation Works
HTM–STM

• If abstract locks conflict they must touch some same
physical words in the abstract locking data structure
— otherwise they could not detect the conflict

HTM–HTM

• No conflict in the locking data structure because all
accesses to it are reads

• Any real conflicts that exist will occur on the actual
abstract lock data structure

Open / Boosted Atomic Method
Body

Validate abstract locks

STM and HTM Methods

STM needs logging HTM doesn't

Different actions during read/write

Different actions for abstract locks

HTM should fall back to STM

STM and HTM Methods

STM needs logging HTM doesn't

Different actions during read/write

Different actions for abstract locks

HTM should fall back to STM

Maintain separate HTM and STM versions of methods

STM Method Variants

Original
(Non-txnal)

STM Method Variants

Original
(Non-txnal)

Can call
A B

STM Method Variants

Original
(Non-txnal)

Top-level Txn
STM

Can call
A B

STM Method Variants

Original
(Non-txnal)

Top-level Txn
STM

Can call
A B

STM Method Variants

STM
Transactionalized

Original
(Non-txnal)

Top-level Txn
STM

Can call
A B

STM Method Variants

STM
Transactionalized

Original
(Non-txnal)

Top-level Txn
STM

Can call
A B

STM Method Variants

STM
Transactionalized

Original
(Non-txnal)

New nested Txn
STM

Top-level Txn
STM

Can call
A B

STM Method Variants

STM
Transactionalized

Original
(Non-txnal)

New nested Txn
STM

Top-level Txn
STM

Can call
A B

STM Method Variants

STM
Transactionalized

Original
(Non-txnal)

New nested Txn
STM

Top-level Txn
STM

Can call
A B

STM Method Variants

STM
Transactionalized

Original
(Non-txnal)

New nested Txn
STM

Top-level Txn
STM

Can call
A B

Hybrid TM Method Variants
Original

(Non-txnal)

Hybrid TM Method Variants
Original

(Non-txnal)Can call
A B

Hybrid TM Method Variants

Router

Original
(Non-txnal)Can call

A B

Hybrid TM Method Variants

Router

Original
(Non-txnal)Can call

A B

Hybrid TM Method Variants

Top-level Txn
STM

Router

Original
(Non-txnal)Can call

A B

Hybrid TM Method Variants

Top-level Txn
HTM

Top-level Txn
STM

Router

Original
(Non-txnal)Can call

A B

Hybrid TM Method Variants

HTM
Transactionalized

Top-level Txn
HTM

Top-level Txn
STM

Router

Original
(Non-txnal)Can call

A B

Hybrid TM Method Variants

HTM
Transactionalized

Top-level Txn
HTM

Top-level Txn
STM

Router

Original
(Non-txnal)Can call

A B

Hybrid TM Method Variants

Optimized
New nested Txn

HTM
HTM

Transactionalized

Top-level Txn
HTM

Top-level Txn
STM

Router

Original
(Non-txnal)Can call

A B

Hybrid TM Method Variants

Optimized
New nested Txn

HTM
HTM

Transactionalized

Top-level Txn
HTM

Top-level Txn
STM

Router

Original
(Non-txnal)Can call

A B

Hybrid TM Method Variants

Optimized
New nested Txn

HTM
HTM

Transactionalized

Top-level Txn
HTM

Top-level Txn
STM

Router

Original
(Non-txnal)Can call

A B

Hybrid TM Method Variants

Optimized
New nested Txn

HTM
HTM

Transactionalized

Top-level Txn
HTM

STM
Transactionalized

Top-level Txn
STM

Router

Original
(Non-txnal)Can call

A B

Hybrid TM Method Variants

Optimized
New nested Txn

HTM
HTM

Transactionalized

Top-level Txn
HTM

STM
Transactionalized

Top-level Txn
STM

Router

Original
(Non-txnal)Can call

A B

Hybrid TM Method Variants

Optimized
New nested Txn

HTM
HTM

Transactionalized

Top-level Txn
HTM

STM
Transactionalized

Top-level Txn
STM

New nested
Txn STM

Router

Original
(Non-txnal)Can call

A B
Parent is closed

A B

Hybrid TM Method Variants

Optimized
New nested Txn

HTM
HTM

Transactionalized

Top-level Txn
HTM

STM
Transactionalized

Top-level Txn
STM

New nested
Txn STM

Router

Original
(Non-txnal)Can call

A B
Parent is closed

A B

Hybrid TM Method Variants

Optimized
New nested Txn

HTM
HTM

Transactionalized

Top-level Txn
HTM

STM
Transactionalized

Top-level Txn
STM

New nested
Txn STM

Router

Original
(Non-txnal)Can call

A B
Parent is closed

A B

Hybrid TM Method Variants

Optimized
New nested Txn

HTM
HTM

Transactionalized

Top-level Txn
HTM

STM
Transactionalized

Top-level Txn
STM

New nested
Txn STM

Router Nested Router

Original
(Non-txnal)Can call

A B
Parent is closed

A B

Parent is open
A B

Hybrid TM Method Variants

Optimized
New nested Txn

HTM
HTM

Transactionalized

Top-level Txn
HTM

STM
Transactionalized

Top-level Txn
STM

New nested
Txn STM

Router Nested Router

Original
(Non-txnal)Can call

A B
Parent is closed

A B

Parent is open
A B

Hybrid TM Method Variants

Optimized
New nested Txn

HTM
HTM

Transactionalized

Top-level Txn
HTM

New nested
Txn HTM

STM
Transactionalized

Top-level Txn
STM

New nested
Txn STM

Router Nested Router

Original
(Non-txnal)Can call

A B
Parent is closed

A B

Parent is open
A B

Hybrid TM Method Variants

Optimized
New nested Txn

HTM
HTM

Transactionalized

Top-level Txn
HTM

New nested
Txn HTM

STM
Transactionalized

Top-level Txn
STM

New nested
Txn STM

Router Nested Router

Original
(Non-txnal)Can call

A B
Parent is closed

A B

Parent is open
A B

Hybrid TM Method Variants

Optimized
New nested Txn

HTM
HTM

Transactionalized

Top-level Txn
HTM

New nested
Txn HTM

STM
Transactionalized

Top-level Txn
STM

New nested
Txn STM

Router Nested Router

Original
(Non-txnal)Can call

A B
Parent is closed

A B

Parent is open
A B

XJ System Architecture

XJ System Architecture

XJ source code

XJ System Architecture

XJ source code XJ Compiler
standard Java

bytecode

compile

XJ System Architecture

XJ source code XJ Compiler
standard Java

bytecode XJ Rewriter
bytecode

+ run-time calls

compile load

XJ System Architecture

XJ source code

XJ run-time
library

XJ Compiler
standard Java

bytecode XJ Rewriter
bytecode

+ run-time calls
HTM-enabled

JVM

compile load run

XJ System Architecture

HTM 4-5 times faster than STM

XJ source code

XJ run-time
library

XJ Compiler
standard Java

bytecode XJ Rewriter
bytecode

+ run-time calls
HTM-enabled

JVM

compile load run

OpenJDK Modifications

Kept to a minimum

• Native methods to begin, end, and abort a HTM transaction

• Made them intrinsic to the HotSpot C1/C2 optimising compilers

Had to jump hoops getting HTM working with the optimising compilers

Results

Synchrobench
Micro-benchmarks to evaluate synchronisation performance on various
data structures

Added ability to run multiple operations within a single transaction
(group size)

Included XJ versions of the benchmarks

• TransactionalFriendlyTreeSet

48-way, Intel Xeon E5-2690 v3 machine with 2 sockets of 12 hyper-
threaded cores

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
)

0

0.2

0.4

0.6

0.8

1

Threads
1 2 4 8 12 16 20 24 28 32 36 40 44 48

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
)

0

0.2

0.4

0.6

0.8

1

Threads
1 2 4 8 12 16 20 24 28 32 36 40 44 48

Open nestedClosed nested

Group size 1

5% Updates

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
)

0

0.2

0.4

0.6

0.8

1

Threads
1 2 4 8 12 16 20 24 28 32 36 40 44 48

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
)

0

0.2

0.4

0.6

0.8

1

Threads
1 2 4 8 12 16 20 24 28 32 36 40 44 48

Group size 1
Group size 2

Open nestedClosed nested 5% Updates

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
)

0

0.2

0.4

0.6

0.8

1

Threads
1 2 4 8 12 16 20 24 28 32 36 40 44 48

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
)

0

0.2

0.4

0.6

0.8

1

Threads
1 2 4 8 12 16 20 24 28 32 36 40 44 48

Group size 1
Group size 2
Group size 4

Open nestedClosed nested 5% Updates

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
)

0

0.2

0.4

0.6

0.8

1

Threads
1 2 4 8 12 16 20 24 28 32 36 40 44 48

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
)

0

0.2

0.4

0.6

0.8

1

Threads
1 2 4 8 12 16 20 24 28 32 36 40 44 48

Group size 1
Group size 2
Group size 4

Group size 8

Open nestedClosed nested 5% Updates

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
)

0

0.2

0.4

0.6

0.8

1

Threads
1 2 4 8 12 16 20 24 28 32 36 40 44 48

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
)

0

0.2

0.4

0.6

0.8

1

Threads
1 2 4 8 12 16 20 24 28 32 36 40 44 48

Group size 1
Group size 2
Group size 4

Group size 8
Group size 16

Open nestedClosed nested 5% Updates

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
)

0

0.2

0.4

0.6

0.8

1

Threads
1 2 4 8 12 16 20 24 28 32 36 40 44 48

Th
ro

ug
hp

ut
 (N

or
m

al
iz

ed
)

0

0.2

0.4

0.6

0.8

1

Threads
1 2 4 8 12 16 20 24 28 32 36 40 44 48

Group size 1
Group size 2
Group size 4

Group size 8
Group size 16
Group size 32

Open nestedClosed nested 5% Updates

 0

 50

 100

 150

 200

1 2 4 8 12 16 20 24 28 32 36 40 44 48 1 2 4 8 12 16 20 24 28 32 36 40 44 48 1 2 4 8 12 16 20 24 28 32 36 40 44 48

Group size 1 Group size 2 Group size 4

co
m

m
itt

ed
 o

ps
 a

nd
 a

bo
rte

d
tx

ns
 (1

06)

threads

open htm commits
closed htm commits

open stm commits
closed stm commits

htm aborts

Conclusions
STM and HTM can co-exist for nested transactions in Java

• Closed nesting — Similar to previous schemes

• Open nesting — Novel validation mechanism

• Implemented in OpenJDK on Intel TSX — Artifact evaluated

Conclusions
STM and HTM can co-exist for nested transactions in Java

• Closed nesting — Similar to previous schemes

• Open nesting — Novel validation mechanism

• Implemented in OpenJDK on Intel TSX — Artifact evaluated

Conclusions
STM and HTM can co-exist for nested transactions in Java

• Closed nesting — Similar to previous schemes

• Open nesting — Novel validation mechanism

• Implemented in OpenJDK on Intel TSX — Artifact evaluated

When it works, HTM is ~4-5× faster than STM

Conclusions
STM and HTM can co-exist for nested transactions in Java

• Closed nesting — Similar to previous schemes

• Open nesting — Novel validation mechanism

• Implemented in OpenJDK on Intel TSX — Artifact evaluated

When it works, HTM is ~4-5× faster than STM

Open nesting increases the envelope of effectiveness for HTM

Conclusions
STM and HTM can co-exist for nested transactions in Java

• Closed nesting — Similar to previous schemes

• Open nesting — Novel validation mechanism

• Implemented in OpenJDK on Intel TSX — Artifact evaluated

When it works, HTM is ~4-5× faster than STM

Open nesting increases the envelope of effectiveness for HTM

Production VM would need deeper modification

