Real-world Challenges for JavaScript Analysis

Efficient String Domains and Beyond

Alexander Jordan, Oracle Labs Australia
Roberto Amadini, University of Melbourne

SAPLING16 — Canberra
November 215t 2016

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs.
It is intended for information purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. Oracle reserves the right to
alter its development plans and practices at any time, and the development, release,
and timing of any features or functionality described in connection with any Oracle
product or service remains at the sole discretion of Oracle. Any views expressed in this
presentation are my own and do not necessarily reflect the views of Oracle.

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Oracle Labs Australia

http://labs.oracle.com/locations/australia

WAF3R — Web Application Framework for
Exploring, Exposing and Eliminating Risks RS

Target: Enterprise Java (JEE) Applications = === .
Server-side: Java o
Client-side: JavaScript —

Vicroria

ARC linkage project™ with University of
Melbourne

* LP140100437

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

http://labs.oracle.com/locations/australia

Agenda

Motivation
Challenges

Proposed Approach

In Detail: Precise Light-weight String Domains (Roberto)

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Popularity Rank on Stack Overflow (by # of Tags)

Motivation: Why Bother?

RedMonk Q316 Programming Language Rankings

1. JavaScript
2. Java

SaQL
L _ 3. PHP
Visual Basi i
| iz 4. Python
Delphi PowerShell 5. CH#
75— XSI]&ESGH‘ID':{ Groov Go .
Makefile
et Clojure
ColdFusionASP TypeScrig Lua 5. C++
Cuda F# , -
ﬁg?,!.',?};,?g“g:l CoffeeScript 5. Ru by
i ang
leScript Dart 8. CSS
App P BBfhmon Lispg
OCaml :
. Mathematica Fay Emacs Lisp 9 C
XQuery 1 1 _
- S 10 Objective-C
Emfl'rlia
ascal &
Autolt Smallfalk
Ada e
boT Vala
25 - - TeX
Xtend Scilab
Game Mak Sata
Lasso :
EﬂF%'Script
M SuperCollider LiveScript
Nemerle nesC Logos
Nimfﬁﬁase Gos vimL
U
Parrot BlitzBasic

3E
[25

Popularity Rank on G}L_Hub (by # of Projects)

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Popularity Rank on Stack Overflow (by # of Tags)

Motivation: Why Bother?

RedMonk Q316 Programming Language Rankings

CoffeeScript

SQL
XML .
Visual Bas! i
Rt
Delphi PowerShell
] sembly Graov
Makefile
et Clojure
ColdFusion TypeScrip y
ASP ua
F#
i ActionScript
Arduino
art Erlang
AppleScript _
BBfhmon L|sc;)p8|am|
50 - Mathematica XQuery Erocessing Emacs Lisp
Puppet
Eliir D PP
ascal Ll
AIRolt smaltalk
Ada e
—nL Vala
25 = - TeX
Xtend Scilab
Game Mak Sata
Lasso .
EﬂF%'Script
M SuperCollider LiveScript
Nemerle esC Logos
Nimr§gase Gos VimL
U
Parrot BlitzBasic
0- drdgpPawislash SQF

ORACLE

3E
25

Popularity Rank on G}L_Hub (by # of Projects)

Lingua franca of the Web
e Client-side (Browser)
e Server-side (node.js)

Mobile Apps

loT

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Challenges: JavaScript vs. Static Analysis
A non-exhaustive list of grievances:
* Few static guarantees (un-typed & dynamic)

* Ubiquitous use of string-based (reflective) property access and object
Introspection

* Intricate semantics and side-effects (e.g. DOM)

* Prevalent use of libraries and frameworks (lack of a standard library)

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Challenges: Precise Analysis

Precision

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Challenges: Precise Analysis
Imprecision spreads fast

var o = { foo: function() { .. },
bar: function() { .. } }

var p = "foo"

if (?77)

var ¥ = o[p] Imprecise prop. access
var result = Q) Imprecise invocation

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Approach: Precise Abstract Interpretation

* Academic tools in this space
— SAFE (KAIST)
— TAJS (Aarhus)

* Perceivable gap to real-world
applications

* When analysis fails

* Lack of representative benchmarks

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

10

Approach: Precise Abstract Interpretation
Improving traceability of precision

lterative
JavaScript static
analysis

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

11

Further Challenges With Web Applications

It’s not just JavaScript, but how it is used...

* Event-driven applications = combinatorial analysis
* Very dynamic code loading

* Client-server (AJAX) communication

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

12

Further Challenges With Web Applications

It’s not just JavaScript, but how it is used...
* Event-driven applications = combinatorial analysis
* Very dynamic code loading

* Client-server (AJAX) communication

Possible solutions
* Hybrid analysis (combined static & dynamic) = back-and-forth?
* Hinted analysis (TypeScript, Flow) = not for legacy applications

ORACLE’

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Precise Light-weight String Domains

Over to Roberto...

ORACLE’

Static Analyisis of (JavaScript) Strings

Roberto Amadini! Graeme Gange! Francois Gauthier?> Alexander Jordan?
Peter Schachte! Harald Sgndergaard! Peter Stuckey! Chenyi Zhang?

IThe University of Melbourne

2Qracle Labs Brisbane

SAPLING 2016 — Canberra, ACT, Australia

Static Analyisis of (JavaScript) Strings 1/14

@ JavaScript is highly dynamic and flexible
e dynamic property access, eval, prototype-based inheritance, coercion, reflection,

@ Precise reasoning about strings is critical for its static analysis
e source-based analysis performed without executing a program

@ Static analysis can detect (absence of) properties or undesired behaviours
o NalN, undefined + string, SQL injections, ...

@ Abstract Interpretation is a well-known theory for static analysis
e based on approximations of concrete executions

Static Analyisis of (JavaScript) Strings 2/14

Abstract Interpretation, informally

@ Mathematical framework for static analysis introduced by Patrick Cousot in 1977
@ We can't analyse all possible concrete executions of a program
e concrete semantics not computable (loops, recursion, ...)
@ We can abstract (= approximate) set of concrete values and operations and
analyse such abstractions
e computable, but possible precision losses and “false alarms”
e Example: concrete values x = {2,8,76,100} can be abstracted by abstract value
X = [1,100] D x. We introduce imprecision (values in X \ x) and possible false
alarms (e.g., we can still say that x is positive, but no longer say that x is odd)

Static Analyisis of (JavaScript) Strings 3/14

Abstract Interpretation and Strings

o Fixed an alphabet ¥, a string abstract domain is the set S of the abstract values
that can approximate concrete strings s € >*
e Formally, it should be a /attice (S,C, L, T,M,) ...
@ An abstraction function o : P(X*) — S mapping set of concrete strings to an
abstract string
o Example: approximate the string value of x after:
if (?77) x = "foo"; else x = "zoo"
o Qchars({fo0,z00}) = {f,0,2z} C XL
@ A concretisation function v : & — P(¥X*) mapping set of an abstract string to a set
of concrete strings
o Yehars({f,0,2}) ={x € X*|f,0,z€ x} CX*
o over-approximation! zoff € Ychars({£,0,2}) \ {foo,zo0}
e « is not the inverse of v, but often form a Galois connection...
e v often returns an infinite set of strings!

Static Analyisis of (JavaScript) Strings 4/14

Abstract Interpretation and JavaScript

@ In JavaScript (JS) is fundamental to approximate strings as precisely as possible

e Example: dynamic access to obj[x], where property x is an unknown string. If
the static analysis approximates x with the set of all possible JS string values, we
have big loss of precision and efficiency!

e obj[x] would point to any property of obj, and any property of its prototype
o side-effects propagated in the analysis!

@ Static analyisis = trade-off between precision and efficiency

Static Analyisis of (JavaScript) Strings 5/ 14

Examples of String Abstract Domains

@ String domains can be generic, e.g.:

Domain

{foo, zoo} example

Character Inclusion (CZ)
Prefix/Suffix (PS)
String Length (SL)
String Set (SS«)

{o},{f,0,2})

(€, 00)

[3,3]

k=1= T, k>1= {foo,zoo}

@ ...but also specific to JS language!

e e.g., domains that discriminate whether a string literal represents a JS numeric
expression, e.g. "-1.7" or "NaN". In the above example, the abstract string is

NotNumber

Static Analyisis of (JavaScript) Strings 6 /14

String Abstract Domains and SAFE

@ We implemented 12 different string abstract domains into SAFE framework
o SAFE is a static analyser for ECMAScript developed by KAIST University (South
Korea) for the JavaScript community
@ SAFE only had one string domain, that we called SF

o SF uses SSy for tracking k > 1 concrete strings, if k threshold is exceeded only
discriminates between Numeric/NotNumber strings (N O domain)
o In the example above, with kK = 1, the abstract string is NotNumber

Static Analyisis of (JavaScript) Strings 7 /14

SAFE String Abstract Domain

Tsr
s, Meyber. | Motimber
. {42,NaN} - -{£00,2z00} 3
: 7N /N

Static Analyisis of (JavaScript) Strings 8 /14

Overview of Implemented Domains

None

/cs\\

UONS Sk CI SH PS
\ |/

HY
\
\\ All -

Static Analyisis of (JavaScript) Strings

Combining String Abstract Domains

@ Can we get more precise analysis by combining different string domains?
o The whole should be more than the sum of the parts!

@ We implemented a systematic way of combining an arbitrary collection of single
domains without any implementation effort

e Formally, this combination is called direct product and generalises the notion of
Cartesian product

Static Analyisis of (JavaScript) Strings 10 / 14

Empirical Evaluation

@ We evaluated different domain combinations on benchmarks of JS programs
e most of them relying on well-known jQuery library
@ Main Result: while a single domain often leads to severe loss of precision, a
suitable combination of domains can outperform the precision of state-of-the-art
JavaScript analysers (e.g., SAFE).
o CZ and NO domains appear to be beneficial!
@ A paper describing this evaluation has been submitted and currently under review
at TACAS conference

Static Analyisis of (JavaScript) Strings 11 / 14

Conclusions

@ Static Analysis is hard, in JS is harder!
@ Precise string approximation is crucial for meaningful analyisis
@ Several orthogonal string abstract domains can be used

@ A good strategy is to take advantage of their combination

Static Analyisis of (JavaScript) Strings 12 / 14

Evaluate new domains (e.g., a regular domain) and benchmarks

From direct product to reduced product of domains
e informally, a “refinement” that removes redundant combinations

Integrate our implementation into SAFE 2.0

Static Analyisis of (JavaScript) Strings 13 / 14

Finally ...

... donel

Questions?

Static Analyisis of (JavaScript) Strings 14 / 14

