
Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Real-world Challenges for JavaScript Analysis
Efficient String Domains and Beyond

Alexander Jordan, Oracle Labs Australia
Roberto Amadini, University of Melbourne

SAPLING16 – Canberra
November 21st 2016

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 2

Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs.
It is intended for information purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. Oracle reserves the right to
alter its development plans and practices at any time, and the development, release,
and timing of any features or functionality described in connection with any Oracle
product or service remains at the sole discretion of Oracle. Any views expressed in this
presentation are my own and do not necessarily reflect the views of Oracle.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Oracle Labs Australia
http://labs.oracle.com/locations/australia

• WAF3R – Web Application Framework for

Exploring, Exposing and Eliminating Risks

• Target: Enterprise Java (JEE) Applications
I. Server-side: Java
II. Client-side: JavaScript

• ARC linkage project* with University of

Melbourne

3

* LP140100437

http://labs.oracle.com/locations/australia

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Agenda

Motivation

Challenges

Proposed Approach

In Detail: Precise Light-weight String Domains (Roberto)

1

2

3

4

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Motivation: Why Bother?

5

1. JavaScript
2. Java
3. PHP
4. Python
5. C#
5. C++
5. Ruby
8. CSS
9. C
10 Objective-C

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Motivation: Why Bother?

6

• Lingua franca of the Web
• Client-side (Browser)
• Server-side (node.js)

• Mobile Apps
• IoT
• …

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Challenges: JavaScript vs. Static Analysis

• Few static guarantees (un-typed & dynamic)

• Ubiquitous use of string-based (reflective) property access and object
introspection

• Intricate semantics and side-effects (e.g. DOM)

• Prevalent use of libraries and frameworks (lack of a standard library)

7

A non-exhaustive list of grievances:

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 8

Challenges: Precise Analysis

High context sensitivity

Precise domains

Accurate models (DOM)

Accurate event relations

Precision

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Challenges: Precise Analysis

9

Imprecision spreads fast

var o = { foo: function() { … },

 bar: function() { … } }

var p = "foo"

if (???)

 p = "bar"

 ...

var f = o[p]

 ...

var result = f()

Imprecise string

Imprecise prop. access

Imprecise invocation

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

• Academic tools in this space

– SAFE (KAIST)

– TAJS (Aarhus)

• Perceivable gap to real-world
applications

• When analysis fails

• Lack of representative benchmarks

10

Approach: Precise Abstract Interpretation

High context sensitivity

Precise domains

Accurate models (DOM)

Accurate event relations

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Approach: Precise Abstract Interpretation
Improving traceability of precision

Record
loss of

precision

Report
relevant

imprecision

Iterative
JavaScript static

analysis

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Further Challenges With Web Applications

• Event-driven applications  combinatorial analysis

• Very dynamic code loading

• Client-server (AJAX) communication

12

It’s not just JavaScript, but how it is used…

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Further Challenges With Web Applications

• Event-driven applications  combinatorial analysis

• Very dynamic code loading

• Client-server (AJAX) communication

Possible solutions

• Hybrid analysis (combined static & dynamic)  back-and-forth?

• Hinted analysis (TypeScript, Flow)  not for legacy applications

13

It’s not just JavaScript, but how it is used…

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Precise Light-weight String Domains
Over to Roberto…

15

Static Analyisis of (JavaScript) Strings

Roberto Amadini1 Graeme Gange1 François Gauthier2 Alexander Jordan2

Peter Schachte1 Harald Søndergaard1 Peter Stuckey1 Chenyi Zhang2

1The University of Melbourne

2Oracle Labs Brisbane

SAPLING 2016 — Canberra, ACT, Australia

Static Analyisis of (JavaScript) Strings 1 / 14

Motivations

JavaScript is highly dynamic and flexible

dynamic property access, eval, prototype-based inheritance, coercion, reflection,
. . .

Precise reasoning about strings is critical for its static analysis

source-based analysis performed without executing a program

Static analysis can detect (absence of) properties or undesired behaviours

NaN, undefined + string, SQL injections, . . .

Abstract Interpretation is a well-known theory for static analysis

based on approximations of concrete executions

Static Analyisis of (JavaScript) Strings 2 / 14

Abstract Interpretation, informally

Mathematical framework for static analysis introduced by Patrick Cousot in 1977

We can’t analyse all possible concrete executions of a program

concrete semantics not computable (loops, recursion, . . .)

We can abstract (≡ approximate) set of concrete values and operations and
analyse such abstractions

computable, but possible precision losses and “false alarms”

Example: concrete values x = {2, 8, 76, 100} can be abstracted by abstract value
x̂ = [1, 100] ⊇ x . We introduce imprecision (values in x̂ \ x) and possible false
alarms (e.g., we can still say that x is positive, but no longer say that x is odd)

Static Analyisis of (JavaScript) Strings 3 / 14

Abstract Interpretation and Strings

Fixed an alphabet Σ, a string abstract domain is the set S of the abstract values
that can approximate concrete strings s ∈ Σ∗

Formally, it should be a lattice 〈S,v,⊥,>,u,t〉 . . .

An abstraction function α : P(Σ∗)→ S mapping set of concrete strings to an
abstract string

Example: approximate the string value of x after:
if (???) x = "foo"; else x = "zoo"

αchars({foo, zoo}) = {f, o, z} ⊆ Σ

A concretisation function γ : S → P(Σ∗) mapping set of an abstract string to a set
of concrete strings

γchars({f, o, z}) = {x ∈ Σ∗ | f, o, z ∈ x} ⊆ Σ∗

over-approximation! zoff ∈ γchars({f, o, z}) \ {foo, zoo}
α is not the inverse of γ, but often form a Galois connection...
γ often returns an infinite set of strings!

Static Analyisis of (JavaScript) Strings 4 / 14

Abstract Interpretation and JavaScript

In JavaScript (JS) is fundamental to approximate strings as precisely as possible

Example: dynamic access to obj[x], where property x is an unknown string. If
the static analysis approximates x with the set of all possible JS string values, we
have big loss of precision and efficiency!

obj[x] would point to any property of obj, and any property of its prototype
side-effects propagated in the analysis!

Static analyisis = trade-off between precision and efficiency

Static Analyisis of (JavaScript) Strings 5 / 14

Examples of String Abstract Domains

String domains can be generic, e.g.:

Domain {foo, zoo} example
Character Inclusion (CI) 〈{o}, {f, o, z}〉
Prefix/Suffix (PS) 〈ε, oo〉
String Length (SL) [3, 3]
String Set (SSk) k = 1⇒ >, k > 1⇒ {foo, zoo}

...but also specific to JS language!

e.g., domains that discriminate whether a string literal represents a JS numeric
expression, e.g. "-1.7" or "NaN". In the above example, the abstract string is
NotNumber

Static Analyisis of (JavaScript) Strings 6 / 14

String Abstract Domains and SAFE

We implemented 12 different string abstract domains into SAFE framework

SAFE is a static analyser for ECMAScript developed by KAIST University (South
Korea) for the JavaScript community

SAFE only had one string domain, that we called SF
SF uses SSk for tracking k ≥ 1 concrete strings, if k threshold is exceeded only
discriminates between Numeric/NotNumber strings (NO domain)
In the example above, with k = 1, the abstract string is NotNumber

Static Analyisis of (JavaScript) Strings 7 / 14

SAFE String Abstract Domain

>SF

{42, NaN} {foo, zoo}

Number NotNumber

{42} . . .{NaN} {foo} . . .

. . .
.

{zoo}

⊥SF

NO

SSk

Static Analyisis of (JavaScript) Strings 8 / 14

Overview of Implemented Domains

None

PS

NO CS

CI SHNSUO SSk

T J JS SF HY

All

Static Analyisis of (JavaScript) Strings 9 / 14

Combining String Abstract Domains

Can we get more precise analysis by combining different string domains?

The whole should be more than the sum of the parts!

We implemented a systematic way of combining an arbitrary collection of single
domains without any implementation effort

Formally, this combination is called direct product and generalises the notion of
Cartesian product

Static Analyisis of (JavaScript) Strings 10 / 14

Empirical Evaluation

We evaluated different domain combinations on benchmarks of JS programs

most of them relying on well-known jQuery library

Main Result: while a single domain often leads to severe loss of precision, a
suitable combination of domains can outperform the precision of state-of-the-art
JavaScript analysers (e.g., SAFE).

CI and NO domains appear to be beneficial!

A paper describing this evaluation has been submitted and currently under review
at TACAS conference

Static Analyisis of (JavaScript) Strings 11 / 14

Conclusions

Static Analysis is hard, in JS is harder!

Precise string approximation is crucial for meaningful analyisis

Several orthogonal string abstract domains can be used

A good strategy is to take advantage of their combination

Static Analyisis of (JavaScript) Strings 12 / 14

Future Works

Evaluate new domains (e.g., a regular domain) and benchmarks

From direct product to reduced product of domains

informally, a “refinement” that removes redundant combinations

Integrate our implementation into SAFE 2.0

. . .

Static Analyisis of (JavaScript) Strings 13 / 14

Finally ...

... done!

Questions?

Static Analyisis of (JavaScript) Strings 14 / 14

