

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Points-To Analysis: Provenance Generation
Paddy Krishnan
paddy.krishnan@oracle.com

Stepan Sindelar, Paddy Krishnan, Bernhard Scholz, K. R. Raghavendra, Yi Lu
Oracle Labs Australia
2016

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Points-To Analysis
Object-Oriented Languages

• Which variables “may point-to” which objects

– Andersen: Flow-Insensitive, subset based

– Steensgaard: Flow-Insensitive, equality based

– Allocation site abstraction

– Access-path abstraction

• Basis of other analyses

– Taint, Escape

• Tutorial by Yannis Smaragdakis

4

https://yanniss.github.io/points-to-tutorial15.pdf
https://yanniss.github.io/points-to-tutorial15.pdf
https://yanniss.github.io/points-to-tutorial15.pdf
https://yanniss.github.io/points-to-tutorial15.pdf

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Andersen’s Points-to
Example

• Allocation site abstraction

• Scales for large code bases

– JDK: 2M variables/500K allocation sites

y

loc2

loc1

x loc2

z loc1

public void bar() {

 z = new T(); // loc1

 foo(z);

}

public void baz() {

 x = new T(); // loc2

 foo(x);

}

private void foo (T q) {

 T y = q;

}

q

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Points-To Analysis
Implementation

• Declarative specification: Datalog
 VarPointsTo(x, obj) :- VarPoints(y, obj), Assign(x, y).

• Taint Analysis
 Tainted(x) :- VarPointsTo(x, obj), TaintedObject(obj).

• Escape Analysis:
 Escapes(obj) :- VarPointsTo(x, obj), ReturnVar(x, method),

 Public(method).

• DOOP framework from Yannis Smaragdakis

– Soufflé engine

6

https://github.com/oracle/souffle/wiki

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Points-To Analysis
Implementation

• Propagates/Uses points-to information

– Reason/Provenance not explicit stored

 VarPointsTo(x,obj)

 Assign(x,y), Assign(y,z), “z = new obj()”

• Infeasible to explicitly store all provenance information

– Preliminary Investigation: Each tuple requires about 50 more tuples for provenance

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Points-To Analysis
Usability Issues/Challenges

• Debugging: Classify results as True Positives or False positives
–Why does variable x point to object o?

• Visualisation

– Show me a taint/escape trace?

• Requires provenance information

• Challenge: Provenance generation for large code-bases
– At least 1 million variables and 300 thousand allocation sites

–Motivated by various subsets of the JDK

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Provenance
Example

 public void bar() {

 z = new T(); // loc1

 foo(z);

}

public void baz() {

 x = new T(); // loc2

 foo(x);

}

private void foo (T q) {

 T y = q;

}

y = q;

foo(z); z = new T();

q = z;

Actual to formal
parameter

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Problem Statement

• Given

– Results of context sensitive points-to analysis

– Client specified queries: Variable var points to location loc

• Find “all provenance traces” for each of the queries using pre-computed
results
–May points-to: All traces must be infeasible for report to be a False Positive

• Resource limits

– Typical clients: Provenance generation less than 10% of points-to analysis

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Solution: Abstract Actual Trace
Interprocedural Flow

• Track only flows between method boundaries

foo:y

bar:z→u

y = q foo(u) z = new T() q = z

parameter

u = w w = z

public void bar() {

 z = new T();

 w = z;

 u = w;

 foo(u);

}

private void foo(T q)

{

 T y = q;

}

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Solution: Abstract Actual Trace
Dataflow via Fields: Alias of base objects

• Load/Store also between method boundaries

goo

parameter

bah:load field q

foo: store field p

public void bar() {

 z = new T();

 w = z;

 u = w;

 foo(u);

}

private void foo(T p){

 field = p;

}

public void bah(){

 T q = field;

 goo(q);

}

bar:z → u

parameter

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Dataflow via Fields: Alias
Depth Limitation

• Alias of base variables can depend on alias of other variables

• Cascading alias

– Expensive to compute

– Hard to visualise

– Increases FPs

• Solution:

– Limit depth to 1 or 2

– Sufficient for most traces

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Reusing Information

• Method boundaries: Identified using computed call-graph edge

• Load/Store pairs: Alias computed using points-to information

• Provenance: Identifies only such methods/variables/fields

• Optimisation: Remove irrelevant methods

–Methods that return parameter
public T check(T v) {

 if (v != null) return v;

 throw new Exception(“error”);

}

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Context Sensitivity

• Context in traces: Not scalable

• Solution: Contexts not part of the trace; but used to construct trace

variable1

variable3

variable4

variable2

ctx1 ctx2 ctx3 ctx4 ctx5 ctx6

ctx1 ctx2 ctx3 ctx4 ctx5 ctx6

variable1

variable3

variable4

variable2

Actual param
 ↓
Formal param

∃𝑐𝑡𝑥, 𝑐𝑡𝑥′, ℎ𝑐𝑡𝑥: ℎ𝑐𝑡𝑥, 𝑙𝑜𝑐, 𝑐𝑡𝑥, 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒1 ∈ 𝑉𝑃 & ℎ𝑐𝑡𝑥, 𝑙𝑜𝑐, 𝑐𝑡𝑥′, 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒2 ∈ 𝑉𝑃 & CallGraphEdge(ctx, …, ctx’, …)

trace1 trace2

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Results
Subsets of Various Versions of the JDK

Code-Base VarPointsTo
Size (tuples)

Client #Client
Queries

Provenance Graph Time
Overhead

Memory
Overhead

Nodes Edges Max
Degree

Subset Version-1 539Million

Taint 836 4287 8538 112 25% 3.4%

Escape 10 13 14 2 1% 9.0%

Subset Version-2 871Million
Taint 900 4563 6774 105 23% 2.2%

Escape 445 1115 6663 33 3.0% 8.8%

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Results: Alias Graph
Context-Sensitive Points-To Analysis: Depth 1

Code-Base Client Alias Graph

Nodes Edges Max Degree

Subset Version-1

Taint 23,791 98,245 136

Escape 0 0 0

Subset Version-2
Taint 12,484 16,443 35

Escape 7,588 28,180 37

17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Presentation

• Graphviz

• Parfait: Internal format

• Shortest path

• Acyclic path

• Time/Output: Depends on size provenance graph

– Taint analysis: Computing acyclic paths times-out

18

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Graphviz: Example

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Conclusion

• Provenance using sequence of method invocations
– Limited control flow paths

• Reuse points-to for call-graph and alias analysis

• Scales for JDK
– Time threshold of 10% not met: Further optimisations required

• Challenges
– Support flow-sensitive analysis

– Dynamic Traces: Querying mechanism of provenance information

– Better UI for trace representation

20

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Questions
Points-To Analysis: Provenance Generation

Contact paddy.krishnan@oracle.com for more details

21

mailto:paddy.krishnan@oracle.com

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 22

