
Memory Optimization for C implementations of Whiley

Min-Hsien Weng1 Bernhard Pfahringer2 Mark Utting3

1Computer Science Department
Waikato University

2Computer Science Department
Waikato University

3School of Business
University of the Sunshine Coast

SAPLING16

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 1 / 18

Whiley

Whiley1 is a new programming language designed to:

Provide ease-to-use syntax (e.g. Python),

Verify a program with given specifications, and detects runtime errors
at compile time, and

Deploy Whiley programs to existing systems (e.g. Whiley to Java
code)

The use of value semantics in Whiley makes program verification easier,
but poses a potential threat to program efficiency.

1Pearce, David J., and Lindsay Groves. ”Designing a verifying compiler: Lessons learned
from developing Whiley.” Science of Computer Programming 113 (2015): 191-220.
Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 2 / 18

Whiley to C

We develop C code generator for Whiley.

Call-by-Value semantics causes our naive C code, translated from
Whiley, to have several performance issues:

I Excessive copying overheads as all arrays are copied before each
modification

I Severe memory leaks as all arrays are allocated on the heap, and not
de-allocated

We apply static analysis techniques to improve the efficiency
I Bound analysis2 finds appropriate integer types
I Copy analysis eliminates unnecessary copies
I De-allocation analysis avoids most of memory leaks

2Weng, Min-Hsien, Mark Utting, and Bernhard Pfahringer. ”Bound Analysis for Whiley
Programs.” Electronic Notes in Theoretical Computer Science 320 (2016): 53-67.
Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 3 / 18

Copy Elimination Analysis

Call-by-value code makes a copy for every value

Examples

a = copy(b) a = foo(copy(b))

Those copies are not needed when

b becomes dead afterwards, or

b is passed as read-only parameter

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 4 / 18

Memory Deallocation Analysis

Copy analysis introduces memory aliasing and makes it hard to find
the right variable to free the allocated memory space.

Every array variable (a) is associated with a runtime flag (a dealloc),
to indicate if this variable is responsible for de-allocation.

Our deallocation analysis needs to preserve the invariant:

Theorem (De-allocation Invariant)

At any program point, exactly one variable is responsible to free the
allocated memory space. Note environment e maps a variable to its value.

(adealloc ∧ e(a) 6= NULL)

⇒ (∀var : VARS • (var 6= a ∧ e(var) == e(a))

⇒ e(vardealloc) = false)

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 5 / 18

Memory Deallocation Analysis
Free an array variable using PRE DEALLOC macro before each update
AND at the end of its scope.

/* De -allocate variables before exit ,

to avoid memory leaks */

PRE_DEALLOC(a);

PRE_DEALLOC(b);

PRE_DEALLOC(c);

return 0;

PRE DEALLOC (a)

expands to:

/* Check the flag to free ,

or not to free a */

if(a_dealloc){

free(a);

a=NULL;

a_dealloc=false;

}

a

b

c

| | ... | |

e(a dealloc) = true
e(b dealloc) = false
e(c dealloc) = false

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 6 / 18

Memory Deallocation Analysis

For a function call a := foo(b), our analysis bases on below results to

Copy or not copy b, and

Choose a macro3 to specify caller/callee to free the passing b
a := foo(b, b dealloc)

Function call a := foo(b)

foo Mutates b? F F T(‘may-be’) T(‘may-be’)

foo Returns b? F T(‘may-be’) T(‘may-be’) F

b is live at caller? F No Copy No Copy No Copy No Copy
RETAIN RESET RESET RETAIN

T (‘may-be’) No Copy No Copy Copy Copy
RETAIN RESET CALLER CALLEE

3RETAIN, RESET, CALLER and CALLEE macros can be expanded to C code to
change/maintain flag values and specify the de-allocator for the passing parameter
Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 7 / 18

Reverse Example — Copy Elimination

// Reverse an array (Callee)

int[] reverse(int[] arr){

...

int[] r = malloc (...);

while(i > 0){

int item = arr[|arr|-i];

i = i - 1;

r[i] = item;

}

return r;

}

// Main entry (Caller)

void main(int argc , ...){

...

//Read -only ’arr’

tmp = reverse(copy(arr));

// Assertion

assert arr[0] == tmp [3];

// Temporary variable

out = copy(tmp);

return 0;

}

Remove un-necessary copies:

Copy of arr
I arr is NOT returned by reverse
I arr is NOT written by reverse
I arr is still alive at main

Pass read-only arr to reverse
function

Copy of tmp

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 8 / 18

Reverse Example — Function Call

void main (...){

...

PRE_DEALLOC(tmp);

/* Do not free the shared

array at reverse */

tmp = reverse(arr , false);

RETAIN(tmp , arr);

...

}

RETAIN(tmp, arr)

expands to:

// No changes to arr flag

tmp_dealloc = true;

arr arr dealloc = true

| | ... | |

tmp tmp dealloc = true

| | ... | |

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 9 / 18

Reverse Example — Assignment

void main (...){

...

PRE_DEALLOC(tmp);

// Alias out to tmp

out = tmp;

TRANSFER(tmp , out);

...

}

TRANSFER(tmp, out)

expands to:

out_dealloc = tmp_dealloc;

tmp_dealloc = false;

TRANSFER macro is similar to
move semantics in Rust

arr arr dealloc = true

| | ... | |

tmp tmp dealloc = false

out out dealloc = true

| | ... | |

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 10 / 18

Reverse Example — Return

void main (...){

...

// Free un-used variables

PRE_DEALLOC(tmp);

PRE_DEALLOC(arr);

PRE_DEALLOC(out);

return 0;

}

arr arr dealloc = true

| | ... | |

tmp tmp dealloc = false

out out dealloc = true

| | ... | |

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 11 / 18

Benchmarks

Benchmark suite includes Reverse, TicTacToe, Bubblesort, Mergesort
and MatrixMult examples

Each benchmark program is translated into 4 kinds of C code:
I Naive: no optimization (Naive)
I Naive + Deallocation: de-allocation analysis only (N+D)
I Copy Eliminated: copy analysis only (C)
I Copy Eliminated + Deallocation: both copy and de-allocation analysis

(C+D)

Performance evaluation
I Average execution time (GCC 5.4.1)
I Memory leaks using Valgrind (v.3.10.1)

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 12 / 18

Average Execution Time — C Code

Reverse Example:

 0

 0.02

 0.04

 0.06

 0.08

 0.1

10
5

10
6

10
7

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
o
n
d
)

Problem Size (log N)

Reverse Test Case

Naive + De-allocated
Naive

Copy Eliminated
Copy Eliminated + De-allocated

Speedup(C vs.Naive) = 2.46x
Speedup(C+D vs. Naive) = 2.49x

TicTacToe Example:

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

10
3

10
4

10
5

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
o
n
d
)

Repeats (log N)

TicTacToe Test Case

Naive
Copy Eliminated

Naive + De-allocated
Copy Eliminated + De-allocated

Speedup(C vs.Naive) = 1.3x
Speedup(C+D vs. Naive) = 1.9x

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 13 / 18

Average Execution Time

Bubble Sort Example:

 0

 1

 2

 3

 4

 5

 6

10
3

10
4

10
5

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
o
n
d
)

Problem Size (log N)

BubbleSort Test Case

Naive
Naive + De-allocated

Copy Eliminated
Copy Eliminated + De-allocated

No speedups

Merge Sort Example:

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

10
3

10
4

10
5

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
o
n
d
)

Problem Size (log N)

MergeSort Test Case

Naive + De-allocated
Naive

Copy Eliminated
Copy Eliminated + De-allocated

Speedup(C vs.Naive) = 2.4x
Speedup(C+D vs. Naive) = 3.3x

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 14 / 18

Average Execution Time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1000 1500 2000 2500 3000

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
o

n
d

)

Problem Size

MatrixMult Test Case

Naive
Naive + De-allocated

Copy Eliminated
Copy Eliminated + De-allocated

MatrixMult Example:
Profiling (gprof) execution time

99% time on calculating dot
products of row and col
(Possible parallelism?)

1% time on copying matrix array

Computation dominates copy
overheads

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 15 / 18

Memory Leaks (MB)

Our analysis effectively avoids all memory leaks of 5 examples.

N N + D C C + D

Reverse
(100,000) 4.8 0 1.6 0
(1,000,000) 48 0 16 0
(10,000,000) 480 0 160 0

TicTacToe
(1,000) 2.7 0 2.0 0
(10,000) 27 0 20.4 0
(100,000) 276 0 204 0

N N + D C C + D

BubbleSort
(1,000) 0.03 0 0.008 0
(10,000) 0.3 0 0.08 0
(100,000) 3.2 0 0.8 0

MergeSort
(1,000) 0.35 0 0.08 0
(10,000) 4.6 0 1.14 0
(100,000) 56 0 14.1 0

MatrixMult
(1,000) 152 0 24 0
(2,000) 608 0 96 0
(3,000) 1.36GB 0 216 0

Memory leaks of naive C code increase with problem size, and would
exhaust all available memory (e.g. 12,000 matrix size uses up 16GB and
stops the program).

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 16 / 18

Related Work

Copy elimination
I Reference counting (GC) at runtime requires extra overheads,

particularly on multi-threads
I Static analysis (MATLAB compiler) at compile-time, similar to ours.

Memory deallocation
I Rust single ownership rule is validated by move semantics at

compile-time
F Every value has a single owner at any given time, similar to ours
F But we keep track of the deallocation responsibility dynamically

I C++11 smart pointers can be deleted automatically by runtime

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 17 / 18

Conclusion

Copy analysis reduces un-necessary copies and gives good speed-ups.

De-allocation analysis drops off unused arrays at an appropriate time
I Chooses macros to change runtime deallocation flag value, and ensures

single deallocation invariant
I Prioritizes memory safety, but still can have unavoidable memory leaks

F Mutually recursive function calls
F Uncertain function behaviours (may-be return or may be read-write)

causes extra copies and has memory leaks at callee

If you require any further information, feel free to contact me
(mw169@students.waikato.ac.nz).

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 18 / 18

