Memory Optimization for C implementations of Whiley

Min-Hsien Weng®?  Bernhard Pfahringer?>  Mark Utting3
LComputer Science Department
Waikato University

2Computer Science Department
Waikato University

3School of Business
University of the Sunshine Coast

SAPLING16

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 1/18



Whiley

Whiley! is a new programming language designed to:
@ Provide ease-to-use syntax (e.g. Python),
o Verify a program with given specifications, and detects runtime errors
at compile time, and
@ Deploy Whiley programs to existing systems (e.g. Whiley to Java
code)
The use of value semantics in Whiley makes program verification easier,
but poses a potential threat to program efficiency.

!Pearce, David J., and Lindsay Groves. " Designing a verifying compiler: Lessons learned
from developing Whiley.” Science of Computer Programming 113:(2015): 191-220.
Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 2 /18



Whiley to C

@ We develop C code generator for Whiley.

o Call-by-Value semantics causes our naive C code, translated from
Whiley, to have several performance issues:
» Excessive copying overheads as all arrays are copied before each
modification
» Severe memory leaks as all arrays are allocated on the heap, and not
de-allocated

@ We apply static analysis techniques to improve the efficiency
» Bound analysis? finds appropriate integer types
» Copy analysis eliminates unnecessary copies
» De-allocation analysis avoids most of memory leaks

2Weng, Min-Hsien, Mark Utting, and Bernhard Pfahringer. "Bound Analysis for Whiley
Programs.” Electronic Notes in Theoretical Computer Science 320 (2016): 53-67.
Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 3/18




Copy Elimination Analysis

Call-by-value code makes a copy for every value
Examples
a = copy(b) a = foo(copy(b)) J

Those copies are not needed when

@ b becomes dead afterwards, or

@ b is passed as read-only parameter

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 4/18



Memory Deallocation Analysis

@ Copy analysis introduces memory aliasing and makes it hard to find
the right variable to free the allocated memory space.

e Every array variable (a) is associated with a runtime flag (a-dealloc),
to indicate if this variable is responsible for de-allocation.

@ Our deallocation analysis needs to preserve the invariant:

Theorem (De-allocation Invariant)

At any program point, exactly one variable is responsible to free the
allocated memory space. Note environment e maps a variable to its value.

(ageatioc N €(a) # NULL)
= (VYvar : VARS e (var # a A e(var) == e(a))
= e(vardeal/oc) = false)

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 5/18



Memory Deallocation Analysis

Free an array variable using PRE_DEALLOC macro before each update
AND at the end of its scope.

/* De-allocate variables before exit,
to avoid memory leaks */
PRE_DEALLOC (a);

PRE_DEALLOC (b);

PRE_DEALLOC (c) ; e(a_dealloc) =

return 0; e(b_dealloc) = /se

e(c_dealloc) = false

PRE_DEALLOC(a) a

expands to: \
R I I

/* Check the flag to free, P4
or not to free a */ -
if (a_dealloc){ c’
free(a);

a=NULL;
a_dealloc=false;

}

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 6 /18



Memory Deallocation Analysis

For a function call a := foo(b), our analysis bases on below results to

@ Copy or not copy b, and

@ Choose a macro to specify caller/callee to free the passing b

a := foo(b, b_dealloc)

Function call a := foo(b)

foo Mutates b? F F T('may-be’) | T(‘may-be’)
foo Returns b? F T(‘may-be’) | T(‘may-be’) | F
b is live at caller? F No Copy | No Copy No Copy No Copy
RETAIN RESET RESET RETAIN
T (‘may-be’) | No Copy | No Copy Copy Copy
RETAIN RESET CALLER CALLEE

SRETAIN, RESET, CALLER and CALLEE macros can be expanded to C code to

change/maintain flag values and specify the de-allocator for.the passing parameter

Min-Hsien Weng (Waikato University)

Memory Optimization on Whiley-to-C

7/18




Reverse Example — Copy Elimination

// Reverse an array (Callee)
int [] reverse(int[] arr){

iAé[] r = malloc(...);
while(i > 0){

int item = arr[larr|-il;
i=d-1 Remove un-necessary copies:
r[i] = item;
} o Copy of arr
return r; » arr is NOT returned by reverse
i/ Main entry (Caller) > arr is NQT Yvritten by. reverse
void main(int argc, ...){ » arr is still alive at main

J/Read-only ’arr’ Pass .read only arr to reverse
tmp = reverse (eepy(arr)); function

//Assertion

assert arr[0] == tmp[3];

o Copy of tmp

//Temporary variable
out = <eeopy(tmp);

return O;

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 8 /18



Reverse Example — Function Call

void main(...){

PRE_DEALLOC (tmp) ;

arr arr_dealloc = true
/* Do not free the shared
array at reverse x/
tmp = reverse(arr, false); | | . | |
RETAIN (tmp, arr);
}
tmp tmp_dealloc = true
RETAIN(tmp, arr) P

// No changes to arr flag
tmp_dealloc = true;

expands to: ] \\\y| | N | |

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 9 /18



Reverse Example — Assignment

void main(...){

PRE_DEALLOC (tmp) ; arr arr_dealloc = true

// Alias out to tmp
out = tmp; | | ‘

TRANSFER (tmp, out);

TRANSFER(tmp, out) tmp tmp_dealloc = false
expands to:
out_dealloc = tmp_dealloc;
tmp_dealloc = false;

C out out_dealloc = true
TRANSFER macro is similar to
move semantics in Rust

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 10 / 18



Reverse Example — Return

arr arr_dealloc = true
| | | |
void main(...){ ! ! l l
// Free un-used variables
PRE_DEALLOC (tmp) ;
PRE_DEALLOC (arr);
PRE_DEALLOC (out); tmp tmp_dealloc = false
return O; AN
} N | | | |
/ T | | |
out out_dealloc = true

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 11 /18



Benchmarks

@ Benchmark suite includes Reverse, TicTacToe, Bubblesort, Mergesort
and MatrixMult examples
@ Each benchmark program is translated into 4 kinds of C code:
» Naive: no optimization (Naive)
» Naive + Deallocation: de-allocation analysis only (N+D)
» Copy Eliminated: copy analysis only (C)
» Copy Eliminated + Deallocation: both copy and de-allocation analysis
(C+D)
@ Performance evaluation

» Average execution time (GCC 5.4.1)
» Memory leaks using Valgrind (v.3.10.1)

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 12 /18



Average Execution Time — C Code

Reverse Example: TicTacToe Example:
Reverse Test Case TicTacToe Test Case
0.1 T T
Naive + De-allocated 0.16 - Naive —+— 4
Naive Copy Eliminated
0.08 - Copy Eliminated 0.14 Naive + De-allocated 1
Copy Eliminated + De-allocated, 042 Copy Eliminated + De-allocated

/
/
0.06 / /
oot 7

0.06 /
0.04

Average Execution Time (Second)

Average Execution Time (Second)
o
o
(o=

0.02 - 4
0.02 __—_=——é
%08 10° 107 %o 10° 10°
Problem Size (log N) Repeats (log N)
Speedup(C vs.Naive) = 2.46x Speedup(C vs.Naive) = 1.3x
Speedup(C+D vs. Naive) = 2.49x J Speedup(C+D vs. Naive) = 1.9x J

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 13 /18



Average Execution Time

Bubble Sort Example:

BubbleSort Test Case

Naive —+—

Naive + De-allocated —&—
Copy Eliminated ——,

r Copy Eliminated + De-allocated 1

@ A~ 0 O

: //
1 _/
0 M-

10° 10 10°
Problem Size (log N)

Average Execution Time (Second)

No speedups

Merge Sort Example:

MergeSort Test Case

g 0.06 I Naive + De-allocated —&— |
S A Naive —+—
3 Copy Eliminated ——
< 0.05 - Copy Eliminated + De-allocated —%— }
£ /
= 0.04
f=4
€ o0 =
o
%
5 002
© —
g o0o01; 1
o
2 0 :

103 10 10°

Problem Size (log N)

Speedup(C vs.Naive) = 2.4x
Speedup(C+D vs. Naive) = 3.3x

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C

14 /18



Average Execution Time

Min-Hsien Weng (Waikato University)

3000

MatrixMult Test Case
T 45Ff Naive —t+—
8 40 L Naive + De-allocated 1
3 Copy Eliminated
by 35 Copy Eliminated + De-allocated 1
I P
E 30 /
s 25 /
5 20
® o
5 15 /
g 10
S g _—
i -
1000 1500 2000 2500
Problem Size

MatrixMult Example:
Profiling (gprof) execution time

@ 99% time on calculating dot
products of row and col
(Possible parallelism?)

@ 1% time on copying matrix array

Computation dominates copy
overheads

Memory Optimization on Whiley-to-C 15 / 18



Memory Leaks (MB)

Our analysis effectively avoids all memory leaks of 5 examples.

NN+D C C+D N N+D C C+D
Reverse BubbleSort
(100,000) 4.8 0 1.6 0 (1,000) 0.03 0 0008 0
(1,000,000 48 0 16 0 (10,000) 03 0 008 0
(10,000,000) 480 0 160 0 (100,000) 32 0 08 O
TicTacToe MergeSort
(10000 035 0 008 0
1,000 27 0 20 0
ElO 00())) A O (10,000) 46 0 114 0
: - (1000000 56 0 141 0
(100,000) 276 0 204 0 MatrodViale
(1,000) 12 0 24 0
(2,000) 608 0 9 0
(3000) 136GB 0 216 0

Memory leaks of naive C code increase with problem size, and would
exhaust all available memory (e.g. 12,000 matrix size uses up 16GB and
stops the program).

Min-Hsien Weng (Waikato University)

Memory Optimization on Whiley-to-C 16 / 18



Related Work

@ Copy elimination
» Reference counting (GC) at runtime requires extra overheads,
particularly on multi-threads
» Static analysis (MATLAB compiler) at compile-time, similar to ours.
@ Memory deallocation
» Rust single ownership rule is validated by move semantics at
compile-time
* Every value has a single owner at any given time, similar to ours
* But we keep track of the deallocation responsibility dynamically

» C+4+11 smart pointers can be deleted automatically by runtime

Min-Hsien Weng (Waikato University) Memory Optimization on Whiley-to-C 17 / 18



Conclusion

@ Copy analysis reduces un-necessary copies and gives good speed-ups.
@ De-allocation analysis drops off unused arrays at an appropriate time
» Chooses macros to change runtime deallocation flag value, and ensures

single deallocation invariant
> Prioritizes memory safety, but still can have unavoidable memory leaks

* Mutually recursive function calls
* Uncertain function behaviours (may-be return or may be read-write)

causes extra copies and has memory leaks at callee

If you require any further information, feel free to contact me
(mw169@students.waikato.ac.nz).

Memory Optimization on Whiley-to-C 18 / 18

Min-Hsien Weng (Waikato University)



