
What Programming Languages Do Developers Use?
A Theory of Static vs Dynamic Language Choice

Aaron Pang, Craig Anslow, James Noble
School of Engineering and Computer Science

Victoria University of Wellington, New Zealand
Email: {pangaaro, craig, kjx}@ecs.vuw.ac.nz

Abstract—We know very little about why developers do what
they do. Lab studies are all very well, but often their results
(e.g. that static type systems make development faster) seem
contradicted by practice (e.g. developers choosing JavaScript or
Python rather than Java or C#). In this paper we build a first
cut of a theory of why developers do what they do with a focus
on the domain of static versus dynamic programming languages.
We used a qualitative research method – Grounded Theory, to
interview a number of developers (n=15) about their experience
using static and dynamic languages, and constructed a Grounded
Theory of their programming language choices.

I. INTRODUCTION

With an increasingly number of programming languages,
developers have a wider set of languages and tools to use.
Static languages are generally considered to have inflexible
code and logical structures, with changes only occurring if
the developer makes them. While dynamic languages allow
greater flexibility and are easier to learn. It can be difficult to
select a language(s) for a given project. There is little research
regarding why and how developers make the languages choices
they do, and how these choices impact their work.

Over the last decade there has been an increase in the
use of dynamic languages over static ones. According to a
programming language survey in 2018 [1], three of the five
most popular programming languages are dynamic. These are
Python, JavaScript, and PHP which accounted for 39%, while
the remaining two C# and Java accounted for 31%. In 2007
the top five were Java, PHP, C++, JavaScript, and C.

In this paper we investigate why and how developers choose
to use dynamic languages over static languages in practice and
vice versa. We created a theory of static vs dynamic language
choice by interviewing developers (n=15) and using Grounded
Theory [2], [3]. The theory discusses how three categories
(attitudes, choices, and experience) influences how developers
select languages for projects, the relationships between them
and the factors within these categories. Attitudes describes the
preconceptions and biases that developers may have in regard
to static or dynamic languages, while choice is the thought
process a developer undergoes when selecting a programming
language, and experience reflects the past experiences that a
developer has had with a language. The relationships between
these categories was that attitudes informs choice, choice
provides experience, and experience shapes attitudes.

II. RELATED WORK

A number of papers about programming languages have
conducted empirical studies, controlled experiments, surveys,
interviews with developers, and analysis on repositories.

Paulson [4] discusses the increase in developers using
dynamic languages rather than static ones. Paulson claims that
developers wish to shed unneeded complexity and outdated
methodologies, and instead focus on approaches that make
programming faster, simpler, and with reduced overhead.

Prechelt and Tichy [5] conducted a controlled experiment
to assess the benefits of procedure argument type checking
(n=34, with ANSI C and K&R C, type checked and non-
type checked respectively). Their results indicated that type-
checking increased productivity, reduced the number of in-
terface defects, and reduced the time the defects remained
throughout development. While Fischer and Hanenberg [6]
compared the impact of dynamic (JavaScript) and static lan-
guages (TypeScript) and code completion within IDEs on
developers. The results concluded that code completion had
a small effect on programming speed, while there was a
significant speed difference between TypeScript (in favour
of) and JavaScript. A further study [7], compared Groovy
and Java and found that Java was 50% faster due to less
time spent on fixing type errors which reinforces findings
from an earlier study [8]. Another study compared static
and dynamic languages with a focus on development times
and code quality using Purity (typed and dynamically typed
versions). Results showed that the dynamic version was faster
than the static version for both development time and error-
fixing contradicting earlier results [9].

Pano et al. [10] interviewed developers to understand their
choices of JavaScript frameworks. The theory that emerged
was that framework libraries were incredibly important, frame-
works should have precise documentation, cheaper frame-
works were preferred, positive community relationships be-
tween developers and contributors provided trust, and that
developers highly valued modular and reliable frameworks.

Meyerovich and Rabkin [11] conducted surveys to identify
the factors that lead to programming languages being adopted
by developers. Analysis of the surveys lead to the identification
of four lines of inquiry. For the popularity and niches of
languages, it was concluded that popularity falls off steeply
and flatlines according to a power law, less popular languages



have a greater variation between niches and developers switch
between languages mainly due to its domain and usage rather
than particular language features. In terms of understanding
individual decision making regarding projects, they found
that existing code and expertise were the primary factors
behind selecting a programming language for a project, with
the availability of open-source libraries also having a part.
For language acquisition, developers who had encountered
certain languages while in education were more likely to learn
similar languages faster while in the workforce. Developer
sentiments about languages outside of projects were examined
with developers tending to have their perceptions shaped
by previous experience and education. Developers tended to
place a greater emphasis on ease and flexibility rather than
correctness, with many of those surveyed being pre-disposed
to dynamic languages. They concluded that all of these factors
are relevant to the adoption of programming languages.

Ray et al. [12] conducted a large study of GitHub projects
(n=729, 17 of the most used languages and the top 50 projects
for each of these), to see the impact static and dynamic
languages as well as strong and weak typing have on the
quality of software. Projects were split into different types and
quality was analysed by counting, categorising, and identifying
bugs. They concluded that static typing is better than dynamic
typing and strong typing better than weak.

Prior research has not explained why developers use certain
programming languages for work and personal projects and
why there is an increase in the use of dynamic languages.
However, the results of prior research will help inform our
research as it analyses where dynamic development may be
utilized rather than static development, as well as running
counter to the belief that statically typed development is al-
ways faster, less error-prone, and easier to fix than dynamically
typed development. The results will be in turn used in our
study to identify potential avenues of questioning for data
collection and analysis, allowing us to identify why developers
use static or dynamic languages.

III. METHODOLOGY

We used the Grounded Theory (GT) method as it supports
data collection via interviews and we were primarily concerned
with the subjective knowledge and beliefs that developers hold,
rather than technical ability [2], [3]. As our research focuses
on people and the decisions that they make in regards to
programming, GT is appropriate to study these behaviours
and interactions particularly for software development projects
as used elsewhere [13]–[20]. Human ethics approval was
obtained. There are several stages to GT. Upon identifying
a general research topic, the first step is the sampling stage,
where potential participants are identified and a data collection
method selected. We used interviews for data collection and
transcribed each interview from audio recordings. Next is
data analysis which uses a combination of open coding and
selective coding. Coding is where key points within the data
are collated from each interview and summarised into several
words. These codes can be formed into concepts, which are

TABLE I: A summary of the participants. Participant ID, Role Type
based on developer role, Experience in number of years, Organization Type,
Programming Languages experience in their main top two languages.

PID Role Exp Organization Languages
P1 Graduate 1 Government Java, JavaScript
P2 Graduate 1 Finance C#
P3 Graduate 1 Accounting JavaScript, C#
P4 Graduate 1 Development Java, Python
P5 PhD Student 4 Energy Java, Coq
P6 PhD Student 4 Education JavaScript, Python
P7 Intermediate >5 Consultancy C#, JavaScript
P8 PhD Student 1 Education Python, C++
P9 Senior >10 Self-Employed Python

P10 Senior 40 Consultancy Python
P11 Senior 10 Development C++ , Objective C
P12 Senior >10 Development JavaScript, TypeScript
P13 Graduate 4 Development Java, JavaScript
P14 Intermediate >5 Development Clojure, JavaScript
P15 Intermediate >5 Development Clojure, JavaScript

patterns between groups of codes and then categories, which
are concepts that have been grown to encompass other con-
cepts. Amongst these categories a core category will emerge,
which will become the primary focus of the study. Selective
coding can then be used which only deals with the core
category. Throughout the process is the memoing task, where
ideas relating to codes and their relationships are recorded
[21]. By recording all of these memos, it allows knowledge
about what is emerging from the data and its analysis. One can
then revisit the data collection phase and adjust their approach
to specifically ask participants questions related to the core
category. In order to create a theoretical outline, the memos
are conceptually sorted and arranged to show the concept
relationships. This theoretical outline will show how other
categories are related to the earlier identified core category.
Theoretical saturation is when data collection is completed
and no new top-level categories are being generated.

The first author conducted interviews with 15 participants,
see Table 1. The interview schedule was updated after the first
interview in order to provide a greater depth of questioning.
The initial schedule only had broad sections, whereas the
revised schedule had specific questions within each section
indicating potential lines of questioning. By asking more open-
ended questions, we were able to attain high-quality responses
that contained more information. Once emergent information
became apparent, questions in future interviews were modified
in order to reflect these trends. From the interviews several
concepts emerged from the open codes. The concepts have
been formed by identifying groups of codes that have broad
similarities (some codes were in multiple concepts) which
helped to find the main theme of the research. Aggregating
the codes helped to inform the factors that determine why
developers make the choices they do regarding utilising static
or dynamic languages. The first author identified the codes
and to support reliability the others validated them to decide
the concepts. Further details about the interview procedure,
interview data, and coding results can be found elsewhere [22].



Fig. 1: Theory of static vs dynamic language choice with categories: Choice, Experience, and Attitudes, their relationships,
and the factors that influence them. Choice provides experiences, experiences shapes attitudes, and attitudes informs choice.

IV. THEORY OF STATIC VS DYNAMIC LANGUAGE CHOICE

The primary theory emergent from the data is that there are
several factors that underpin programming language choice,
see Fig. 1. These factors can be aggregated into three key cat-
egories: attitudes, experience, and choice. In addition to being
influenced by their factors, categories can also influence each
other, with experience shaping attitudes, attitudes informing
choice, and choice providing experience.

A. Attitudes

The Attitudes category represents a developer’s existing bias
for or against a certain language or class of language, which
influences their overall decision making. If a developer has a
positive bias towards a static programming language, they are
more likely to use it for personal and enterprise projects and
likewise if they prefer dynamic languages. This can also hold
true for negative perceptions of programming languages. If
a developer has a negative perception of a language, this will
also impact language choice. There are several factors that can
shape a developer’s attitudes which include: static language
partisanship, switching between static and dynamic languages
not being an issue, and that more experienced developers tend
to prefer static programming languages.

1) Static language partisanship: Refers to how developers
that primarily use static languages feel strongly about the
advantages they offer. Several participants indicated that they
mostly used typed languages. Due to these languages perform-
ing error checking during compile time rather than at runtime,
participants felt more secure about their code being error free
when executed. These participants also believed that dynamic
languages did not offer the same level of error checking, with
errors potentially being present in programs using dynamic
languages for longer periods of time.

“It gives you a better sense of security in the end that
you’ve done something, you can leave it and it’s working.
If you need to touch it, the compiler will tell you why.
There’s a sense of security once you run the compiler and

it tells you it’s ok. With JavaScript, you could have a typo
and not notice it for 5 years.” P7

Participants who strongly approved of static languages
found that using dynamic languages was not faster and felt
using a static language produced greater efficiency and pro-
gramming speed. Although there was more to type due to
having to declare types, participants who strongly supported
static languages claimed developers should be fast typists
anyway and that the additional time spent was often saved
when it came to error checking and fixing bugs. It was
commonly stated that dynamic languages were less reliable
and that having a type-checking system allowed for better
planning and more structured development due to having to
consider the type of each object and how it would be utilised.

Those who used dynamic languages were less vocal in
their support for static or dynamic languages. They looked
at both types of languages equally and considered the merits
and drawbacks for both. Participants who primarily used static
languages were strongly in support of them and a few stated
that they would not use dynamic languages unless there was
absolutely no alternative. They frequently cited that many
dynamic languages had a static counterpart that would enable
them to have the benefits a static language offered (e.g.
TypeScript being a static version of JavaScript).

Static language partisanship shows a clear indication of
developer’s bias towards static languages and against dynamic
languages. For many developers, there is an ingrained inclina-
tion towards the usage of static languages to the point where
dynamic languages are not considered unless absolutely nec-
essary, which is significant in programming language choice.

2) Developers with more experience prefer static lan-
guages: Refers to how developers with more experience
programming tended to more strongly support the usage of
static languages for personal and industry projects rather
than dynamic languages. One possible reason for this is that
significant usage of dynamic languages has only picked up re-
cently, while participants with more experience will have been
programming for companies and projects well before this shift



towards web programming. This would imply that experienced
developers have more history with static languages and may
feel more comfortable using them.

“In my experience, where I have found serious problems
is that say I made a typo, dynamic languages don’t tell me
anything at all. I don’t find out until I eventually see that
the code is not working and then I check that the spelling
is wrong. If I had the ability to pre-declare and if I try
to reference a member I didn’t declare, it’d immediately
throw an exception and tell me to fix it.” P10

Another reason is that more experienced developers are
more likely to hold senior roles within project teams, often
acting as managers or lead developers. Thus, they may value
different traits in programming languages than junior devel-
opers or those who focus more on personal projects and start-
ups. There may be an emphasis placed on having better error
checking or enforcing structure throughout development, both
of which static languages provide through having a compiler
and type declaration. Some developers may have pre-existing
biases which can be built up over a long period of time and
tend to be further up within a team or company hierarchy,
either as a lead developer or a project manager. This gives
them more control over projects and language selection, which
may be impacted due to this factor.

3) Switching between static and dynamic languages not an
issue: Due to the significant differences between several static
and dynamic programming languages, using either for too
long may cause developers to forget some of the quirks and
idiosyncrasies of other programming languages and make a
transition to another project difficult. This was often not the
case, with participants indicating that their training both at an
educational and corporate level meant that they were well-
versed in several programming languages and that alternating
between them did not cause an increase in errors or mistakes.

”By and large, you’ve got stuff on the screen to look at
and I can switch reasonably well now anyhow” P9

Some participants stated that although there were minor
difficulties such as re-adjusting to the usage of curly brackets
and semi-colons if returning to Java from using Python, these
were often short-lived once they got back into the “swing of
things.” Although some developers indicated that they may
have a preference for working in a given language due to
experience or because they enjoyed how that language worked,
this did not impact on their development capabilities in other
languages that they used less, but were still familiar with.

”You’ll be programming in Java & then switch to Python,
add a semi-colon, and think that is not right.” P4

B. Choice

The Choice category represents the thought process that a
developer undergoes when actually selecting a programming
language to use for a project. It is a measure of the factors
that influence how much say a developer feels they have when
making a language selection and whether or not they have
the ability to impact this selection if it is not being made

by them. Choice is effectively the final steps in a developer’s
rationalisation of using a given programming language over
another and the impact that they perceive it will have on
the development process. There are several factors that can
influence choice which include: project languages often being
pre-selected, languages being chosen based on familiarity and
tooling, library, and IDE support for a selected language.

1) Project languages are often pre-selected: Several partic-
ipants indicated that the choice of programming language was
not their responsibility. All participants were asked whether
they selected the language used in the projects they had worked
on and for most this was not the case.

”It was something that the founder learned and liked. They
thought it was good for solving mathematical problems
and we’ve used it since.” P14

Languages were either selected by the lead developer or
management or they came onto an existing project that was
already using a certain language due to large, pre-existing
code bases. This restricted the choices that were available to
project teams and meant that there were sometimes few viable
languages to choose from. Often, these were languages that
the participants already knew. However, in instances where
the participant had to learn a new language, management was
generally supportive and provided assistance.

Most participants tended to believe that the languages cho-
sen by the organisations and teams they worked within were
good fits for the project. Despite not being able to significantly
impact the choice of development language, most developers
felt that this was not important and that they were usually
brought onto projects that fit their skillset anyway. However,
there were some exceptions where developers believed that
the project could have better met time deadlines, budget, or
functional/non-functional requirements if a different program-
ming language was used. Another reason for why program-
ming languages were pre-selected was that the company a
participant worked for often specialised in a given language
and almost all of their development was done in that language.

For lead developers, project managers and those fortunate
enough to be able to have a direct impact on language selection
for projects, it was important to analyse how decisions were
made. Often, there was less choice available than initially
believed due to restrictions such as company expertise or
pre-existing code bases that were to be utilised. This was
interesting as it showed that both senior developers and those
further down the chain of command had this lack of choice
in common and was certainly a factor in how programming
language decisions were reached.

2) Languages chosen based on familiarity: Many partici-
pants indicated that project leads and lead developers often
selected programming languages that they were personally fa-
miliar with or that they felt the majority of workers within the
project team would be familiar with. One reason for this stated
by participants is the difficultly in attracting new workers for
projects if they were developed using languages that people
were unfamiliar with. By opting to use more popular languages
(e.g. JavaScript, Java, or C++) it would be easier to recruit



experienced developers for projects. Another reason that fell
in a similar vein was that using a language that developers
were unfamiliar with would slow down development and make
it more costly. This is due to the expense with having to
train people in a new language and potential increase in time
spent error-checking due to inexperience being more likely to
introduce bugs into project code.

“There was a lot of ugly code because it was new to me
and if I could go back, I’d definitely clean it up.” P3

Conversely, by selecting a familiar language, lead develop-
ers felt that development would be faster and result in a higher-
quality product. When it came to selecting a programming
language for personal projects or projects where they were the
lead, developers often opted for languages they were familiar
with or languages that were similar. Developers who favoured
and were used to programming with static languages were
more likely to choose those as was the reverse case.

“I don’t think any decisions were made about Python
because of syntactical reasons. I think they chose Python
because everyone knew it.” P12

Languages chosen based on familiarity show how non-
technical factors can be a decider in what programming
language is used for a project. Often, it is not just the technical
benefits and drawbacks that must be considered, but also the
benefits to the team. By selecting languages that are familiar
to teams, developers believe that they are increasing the odds
of success by minimising any particular learning curves.

3) Tooling, IDE and library support: These represent some
of the technical factors that may impact why a specific
language was chosen. Tooling refers to tool support, which
are development tools that can be utilised to support and
complement programming languages by providing additional
functionality that they do not presently have. IDE support is
defined as the set of IDEs that can be used or are compatible
with the selected programming language, while library support
is the list of libraries and the additional services or functional-
ity that these provide. The support provided for a language can
be an influence behind a developer’s choice regarding whether
or not to use that particular language. Several participants
felt that tool support was a major benefit when selecting a
language, due to the options it added. Some stated that it
simply allowed you to do more than an equivalent language
without tool support.

“Static languages enables certain tool support that you
can’t get otherwise or that requires type inference or
runtime tracing or what have you.” P9

Having multiple libraries was a benefit that many partic-
ipants pointed out with similar reasoning to the upsides of
tool support. They felt that it provided significantly increased
functionality and a wider range of options that could be utilised
when programming, with claims of time-saving due to libraries
being able to provide code that would otherwise take extended
periods of time to figure out and develop. On the other hand,
languages with little library support meant that they had little
increased functionality and may not be considered.

“We chose Java because there’s a library for whatever
you need to do.” P5

IDE support was less of a factor, with some developers
indicating that although they looked for compatibility with
mainstream IDEs, they often did not want to use many of
the flashier options instead preferred a more simple approach.

C. Experience
The Experience category represents the previous experi-

ences that a developer has had with a given programming
language. There are three subcategories: speed, errors, and
structure. Each of these has a static factor and a dynamic fac-
tor. Speed refers to how language choice has affected speed in
previous projects, errors is the error checking experience that
developers have had using previous languages, and structure
refers to how structured the development process was when
using either a static or dynamic language.

1) Speed: Static – build/compile times slow larger projects
down. For participants who worked on larger projects, the
build and compile times necessitated by using a static language
could become cumbersome and have a negative impact on
development. This was often due to having a large number of
modules being used. Participants found this to be cumbersome
and that the time spent waiting for a build to compile could
be completely mitigated or removed through the usage of an
appropriate dynamic language.

“There’s thousands of modules now in the project and
TypeScript has to compile and it’s really slow. We’re often
running out of memory in some cases, which is a real
problem for us.” P12

If static languages can slow down larger projects due to
the increased compile and build times, this may impact the
decision-making rationale of a developer for another project.
Their experience of a static language providing these increased
waiting times may make them less likely to employ a static
language for a similarly-sized project in the future.

Dynamic – good for smaller projects and quick starts.
Several participants raised the idea that dynamic languages
were suited for projects that were small in scale or needed
a product up and running quickly. Several mentioned both
Python and JavaScript as being two languages which were
easy to set up and get something working quickly. Often,
this was better for personal projects, where participants may
not have the time to commit heavily to them and using
dynamic languages would result in observable results sooner.
Developers believed that this often had an impact on project
success as getting the framework up and running quickly
meant that work could begin faster and less time was wasted on
setting up. This allows for maximum efficiency and allocating
more time and resources to the software development stage
rather than being bogged down in setup.

“Dynamic languages are great for small hacky things.”
P9
“The setup was super fast. You just have the command
line interface, the node package manager and it all just
goes. The overall setup did contribute to the project.” P1



2) Errors: Static – provide better error checking. One
common trend amongst all participants was that type checking
and the presence of a compiler generally meant that they
provided better error checking for programs. Errors were
caught before runtime and the compiler or IDE would inform
the developer if there was an error and what had caused it. This
was different from dynamic languages, where error checking
does not occur until runtime.

“A lot of errors don’t show up until they actually happen
in JavaScript, C# is a lot clearer since the compiler will
tell you if there is an error.” P2

Proponents of static languages who believed it had superior
error checking often stated that dynamic languages do not
inform you about misspelled items and other basic items,
while they claimed that static languages would pick these up
immediately and point the developer to the location of the typo
due to having a compiler. In addition to this, declaring types
meant that any type-associated errors were either eliminated
from the beginning as the developer clearly knew what type
would go where or the compiler would rapidly pick them up,
allowing the developer to fix them.

“The times I’ve dealt with JavaScript, it hasn’t been good.
It’s really not clear what types the inputs are and what
the outputs are.” P10

Some participants indicated that using dynamic languages
meant that testing and debugging was harder, with this in-
creasing the longer on a project. One reason given was that
without types, it was harder to interpret and understand what
was going on inside the code. Using a static language provided
better clarity and made it easier to look at other people’s code
when debugging or doing pair programming.

“Looking through other people’s code to see what’s hap-
pening is a lot more difficult, especially when one person
breaks one thing and find out where the break is being
caused. It’s even worse there’s more people working on
it. Using a static language might have reduced this.” P1

Dynamic – easier to learn. Participants claimed that dy-
namic languages tended to be easier to learn for those new to
programming, learning a new programming language, or who
had just joined industry. Participants found that not having to
declare variables allowed them to get more work done with
less effort which minimized the overhead by having to think
less about the semantics of their code.

“I program a lot faster without types. I find them ob-
structive to my thought process of continuing to design
something. It may be because I design things as I go,
rather than planning them out.” P11

Type declaration was another step that typically slowed
things down for these developers. When learning a new
language, several participants stated that having to understand
and declare types would have slowed down the rate at which
they learned. This was because they would have to worry
about whether variables were correctly typed in addition to
learning and applying new skills and concepts. Conversely,
with static languages, the concept of typing and how types

worked for specific languages meant that there was a greater
learning curve and thus, take longer to get working code.

“Starting out, it makes it a little simpler. It’s a tiny bit
of mental labour you don’t have to do, meaning you can
think at a higher level.” P4

New users of dynamic languages felt that they could im-
mediately make progress on their projects and work without
having extra consideration of variable types, while new users
of static languages believed that there was more of a gap before
they could get something working. A language that partici-
pants commonly cited as being easy to learn was Python. Even
amongst those who advocated for static languages, Python was
still regarded as one of the best programming languages to
introduce to those who had never done programming before
due to the increased complexity typing brings, and relative
straightforwardness of the language itself.

3) Structure: Static – enforce more structure within devel-
opment. Several participants stated that the usage of static lan-
guages enforced structure throughout software development.
Due to having to declare the types of variables meant that
forethought had to be put into envisaging how the code would
look before entering it. Some participants believed that having
a more structured development process where they had to
put forethought into typing and the overall structure of the
program meant that there would be less errors and the overall
experience would be more streamlined.

“Once we had it up and running and we could show them
how everything was organised. In the end, code quality
and organisation of code [using Java] was much higher
than the JavaScript project we also had running.” P7

Using a static language with a more structured development
process impacted the experience of developers. For many
participants, this is a matter of personal preference. This
shapes a developer’s experience as it is one thing to have read
about structured development and another to apply it, with
some developers responding better to more freedom.

Dynamic – provided more flexibility within development.
Some of the participants in the study believed that dynamic
languages allowed developers to have more flexibility in
the development process, without being constrained by type
declaration and other enforced structures that arise from static
programming languages. Some participants felt that the ability
to ignore typing meant that they could spend more time
thinking about how to solve the problems presented by the
project rather than having to focus on getting the structure
and typing right.

“With JavaScript, you can do whatever you want. If you’re
using Java, you have to adhere to the rules.” P1

Dynamic languages provided more flexibility on code struc-
ture and are learned by having previous experience with a
language, rather than relying on theory. If a developer uses a
dynamic language and finds that it allows them to not have to
worry about conforming to rules, and they find this approach
works for them, it will build a positive experience.



V. DISCUSSION

We now discuss the relationships between each of the cate-
gories, with choice providing experience, experience shaping
attitudes, and attitudes informing choice.

A. Choices Provides Experience

The relationship between choice and experience is repre-
sented by the choices that a developer makes provides them
with experience in the future. With a language choice being
made and time being spent using the language for either an
industry or personal project, the developer builds a greater
familiarity with that language. As this familiarity increases,
the developer can examine whether the reasons they used to
choose that language were in fact justified and met or if usage
of that language did not deliver the results they believed it
would. Thus, the choice of language provides experience that
can be used for future choices. Each of the three factors present
within the choice category have an influence on a developer’s
experience regarding static and dynamic languages.

Project languages often being pre-selected can bring a
negative perception of that language to a developer, if they
did not enjoy the development process involving it. They may
feel they were forced into using that language and that given
their own choice, would much prefer to use something else.
On the opposite side, this can also build a positive experience.
If a developer had tepid feelings about a language, but had
to use it and the learning and management structures were
there to assist them and they experienced success, this may
change their initial negative feelings and convert them into
positive ones. The final case is where a developer is ambivalent
to the choice of language and their work did not change
this. In this instance, there is no positive experience, but
no negative experience and they may objectively look at it
regarding benefits and drawbacks in the future.

Programming languages chosen based on familiarity will
impact experience depending on whose familiarity it was
chosen from. If it was the developer’s, then this may reinforce
a positive experience as they are using a language they are
comfortable with. However, if the language was chosen based
on a lead developer or manager’s familiarity, this results in
a similar situation to the previous factor. There can either
be a positive influence, a negative influence or ambivalence,
dependent on their preconceptions regarding the language and
their experience with the development process.

Tooling, IDE, and library support also provides a developer
with experience by helping to make programming easier and to
simplify complex tasks. They learn what support a language
does have and whether it is relevant to the task they were
trying to perform. Languages that possess superior support
will provide more successful outcomes and developers will
look more favourably upon those languages. If their usage
of a language involved tapping into its tooling, IDE and
library support and this resulted in a positive result, then the
experience provided will be positive. If the support was lacking
and inhibited a developer’s ability to do work, this will result
in a negative experience.

B. Experience Shapes Attitudes

The relationship between experience and attitudes is where a
developer’s previous experience with a programming language
then shapes their preconceptions towards that language. Once
a developer has used a language and they have experiences
with it, these experiences are looked upon when making
future choices. They examine their past feelings and senti-
ments, which feeds into their preconceptions and personal
bias. These subjective personal beliefs form the basis of a
developer’s attitudes to certain programming languages and
types of programming languages. Effectively, if a developer
has a positive experience with a programming language, then
they will have a positive disposition towards consideration and
future usage. However, if the experience was negative, then
their perception will impact any future considerations. Rather
than looking at empirical research and letting previous studies
inform them, developer’s preconceptions are instead shaped
by their experiences. Factors within the experience category
all influence a developer’s attitudes regarding language usage.

Speed is an indication of how static or dynamic typing
contributes to the overall development speed of the project.
The compile/build times of static languages slows down larger
projects. This reflects experience as it is often not something
a developer can foresee, but something that is noticed over the
span of the project as it increases in size and scope. With this
experience, a developer’s attitudes towards static languages is
altered. If compile or build times were increased due to use of
a static language, a developer may be less inclined to select
a static language for another large project. Contrary dynamic
languages are good for quick starts and smaller projects. This
represents a developer’s experience using dynamic languages
for small-scale projects. For projects that require working code
or deliverables in a short span of time, developers may be more
likely to turn towards dynamic languages if they have previous
experience of using them for a similar purpose in the past.
This then shapes their attitude towards dynamic languages as
they view them as being well-suited to small projects or those
which require a quick start.

Errors represents the experiences regarding error checking
in languages. The first factor that falls within this subcategory
is that static languages provide better error checking. This
is an indication of a developer’s experience with a static
language and whether it picks up on errors. It also covers
previous experience regarding dynamic languages and their
supposed weakness in error checking. This factor can shape a
developer’s attitude as it provides a clear comparison between
the two types of languages. Previous usage of static languages
where errors were identified and caught by the compiler and
the developer was able to fix them as a result will provide
a positive experience. This would shift their attitude of static
languages to a more positive slant. Likewise, if previous usage
of dynamic languages resulted in less errors being detected
and a longer time spent debugging and cleaning up code,
then a developer’s attitudes towards dynamic languages will
be negatively shaped by their error checking experience.



Structure encompasses a developer’s experience of how
structured or flexible development is using either a static or
dynamic language. Static languages enforce more structure
within development which indicates how developer’s felt static
languages affected pre-planning and overall code structure
by enforcing type declaration. Structure can have either a
positive or a negative effect on a developer’s attitude towards
static or dynamic languages, depending on their personal
preference. If a developer enjoys having rigid development
where everything is planned before hand, it will have a positive
impact. Otherwise, it will have either no or negative impact.
However, structured development was something that more
experienced developer’s sought. This was usually because they
had more experience and acted as project leads and managers.
Dynamic languages, however, provide more flexibility within
development. This represented whether developer’s believed
that using dynamic languages would allow them greater flexi-
bility when it came to structuring their code and if it permitted
more coding on the fly. Personal preference was significant
when it came to whether or not dynamic languages provided
a positive or negative impact. Developers that engaged in
lots of personal projects enjoyed the flexibility that dynamic
languages brought due to less effort required to consider type
declaration and time could be put towards getting results.
However, this trait was not valued by experienced developers
who had acted as project leads, as having a greater degree of
pre-planning usually meant that projects were more successful.

It is clear that a developer’s previous experience with a
static or dynamic language (be it positive or negative) has
a significant influence on their attitude towards that type of
language in the future. Effectively, the experience shapes their
attitudes and moulds their perceptions and preconceptions
of static or dynamic languages. This can either be through
validating and reinforcing pre-existing beliefs and biases or
by changing them and resulting in adopting new languages.

C. Attitudes Informs Choices

The attitudes that developers have regarding certain lan-
guages and types of languages are significant in the choice
of language. Sometimes the decision to use a certain language
or discount it from selection simply boils down to whether
a developer likes that language or not. Attitude is difficult
to quantify as it deals with a developer’s feelings and there
are limited concrete ways of measuring this. If a developer’s
preconceptions of a language are negative, then they will
usually not use that language unless there are significant
gains to be made from doing so. Likewise, if a developer
has a strongly positive perception of a certain programming
language, then they will be more inclined to use that language,
even if it is not the most appropriate for a project.

Static language partisanship represents a developer’s strong
positive bias towards the usage of static languages. Participants
who advocated for static languages were strongly in favour of
them and strongly opposed the usage of dynamic languages.
Whereas those who preferred dynamic languages tended to
acknowledge the strengths of dynamic languages but accepted

that there were areas where static languages performed better
(e.g. error checking). The strong preconception that static
language partisanship shows is indicative of how attitudes can
inform a developer’s choice in what language to use, as those
who displayed static language partisanship would be hard-
pressed to choose a dynamic language for a project.

Developers with more experience tend to prefer static lan-
guages indicates positive bias towards static languages due
to their experience. Participants who had less experience in
industry tended to prefer to use dynamic languages for a
variety of reasons, while participants who had more years of
experience tended to opt for static languages. This is another
preconception that is held within a more limited group of
participants, but can still influence the choice that they make.

Switching between static and dynamic languages was not
an issue represents the difficulty a developer may have if two
different components of a project are developed using differing
languages and their perception of it. For many participants,
this was a non-issue as they adjusted rapidly with only a few
minor errors being made. However, when making a choice,
lead developers may assume that it would be better to have
all components of a project use the same language.

A developer’s preconceived attitudes towards certain lan-
guages or types of languages can impact their choice for a
project. If a developer has a negative attitude regarding a
programming language, then they are unlikely to select that
language even if it is the best suited for a project. The reverse
is true for positive perceptions, which may result in choosing
a language that is not an optimal fit for a project. Thus,
a developer’s existing attitudes towards specific languages
directly informs the choice of language that they will make.

VI. CONCLUSION

Our aim was to develop an emergent theory of why develop-
ers do what they do focusing on the usage of static or dynamic
programming languages by interviewing developers (n=15)
and using Grounded Theory [2], [3]. We produced a theory
of static vs dynamic language choice that discussed three
categories that influenced how developers select languages
for projects, the relationships between them, and the factors
within these categories. These three categories are: attitudes,
choices and experience. Attitudes describes the preconceptions
and biases that developers may have in regard to static or
dynamic languages, while choice is the thought process a
developer undergoes when selecting a programming language,
and experience reflects the past experiences that a developer
has had with a given language. The relationships between these
categories was that attitudes informs choice, choice provides
experience, and experience shapes attitudes. This forms a clear
link between all three categories and how their factors can
shape and influence each other. This is a first cut of the
theory and there are several potential future avenues such as
interviewing more developers, conducting online surveys, and
considering other languages aspects (beyond types systems) to
study programming language choice which will further help
validate our results.



REFERENCES

[1] P. Carbonnelle, “PYPL PopularitY of Programming Language,” http:
//pypl.github.io/PYPL.html, 2017.

[2] B. Glaser, Theoretical sensitivity: Advances in the methodology of
grounded theory. Sociology Pr, 1978.

[3] J. Holton, “Grounded theory as a general research methodology,” The
grounded theory review, vol. 7, no. 2, pp. 67–93, 2008.

[4] L. Paulson, “Developers shift to dynamic programming languages,”
Computer, vol. 40, no. 2, 2007.

[5] L. Prechelt and W. Tichy, “A controlled experiment to assess the benefits
of procedure argument type checking,” IEEE Transactions on Software
Engineering, vol. 24, no. 4, pp. 302–312, 1998.

[6] L. Fischer and S. Hanenberg, “An empirical investigation of the effects
of type systems and code completion on API usability using TypeScript
and JavaScript in MS Visual Studio,” ACM SIGPLAN Notices, vol. 51,
no. 2, pp. 154–167, 2015.

[7] S. Okon and S. Hanenberg, “Can we enforce a benefit for dynamically
typed languages in comparison to statically typed ones? a controlled
experiment,” in ICPC. IEEE, May 2016, pp. 1–10.

[8] S. Hanenberg, S. Kleinschmager, R. Robbes, E. Tanter, and A. Stefik,
“An empirical study on the impact of static typing on software main-
tainability,” Empirical Softw. Eng., vol. 19, no. 5, pp. 1335–1382, 2014.

[9] S. Hanenberg, “An experiment about static and dynamic type systems:
doubts about the positive impact of static type systems on development
time,” ACM SIGPLAN Notices, vol. 45, no. 10, pp. 22–35, 2010.

[10] A. Pano, D. Graziotin, and P. Abrahamsson, “What leads develop-
ers towards the choice of a JavaScript framework?” arXiv preprint
arXiv:1605.04303, 2016.

[11] L. Meyerovich and A. Rabkin, “Empirical analysis of programming
language adoption,” ACM SIGPLAN Notices, vol. 48, no. 10, pp. 1–18,
2013.

[12] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of
programming languages and code quality in GitHub,” in FSE. ACM,
2014, pp. 155–165.

[13] A. Martin, R. Biddle, and J. Noble, “XP customer practices: A grounded
theory,” in Agile, 2009, pp. 33–40.

[14] ——, “The XP customer team: A grounded theory,” in Agile, 2009, pp.
57–64.

[15] S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to study
the experience of software development,” Empirical Softw. Eng., vol. 16,
no. 4, pp. 487–513, 2011.

[16] R. Hoda, J. Noble, and S. Marshall, “Grounded theory for geeks,” in
PLOP. ACM, 2011, p. 24.

[17] ——, “Developing a grounded theory to explain the practices of self-
organizing agile teams,” Empirical Software Engineering, vol. 17, no. 6,
pp. 609–639, 2012.

[18] S. Dorairaj, J. Noble, and P. Malik, “Understanding lack of trust in
distributed agile teams: A grounded theory study,” in EASE, 2012, pp.
81–90.

[19] M. Waterman, J. Noble, and G. Allan, “How much up-front?: A
grounded theory of agile architecture,” in ICSE. IEEE, 2015, pp. 347–
357.

[20] R. Hoda and J. Noble, “Becoming agile: A grounded theory of agile
transitions in practice,” in ICSE. IEEE, 2017, pp. 141–151.

[21] P. Montgomery and P. Bailey, “Field notes and theoretical memos in
grounded theory,” Western Journal of Nursing Research, vol. 29, no. 1,
pp. 65–79, 2007.

[22] A. Pang, “Why do programmers do what they do,” 2017, Honours
Report. Victoria Unviersity of Wellington, New Zealand.


