
On the Architecture of a
(Verifying) Compiler

David J. Pearce

School of Engineering and Computer Science
Victoria University of Wellington

@WhileyDave
http://whiley.org http://github.com/Whiley

@WhileyDave
http://whiley.org
http://github.com/Whiley

What is a Compiler?

“A compiler is likely to perform many or all of the following
operations: preprocessing, lexical analysis, parsing,
semantic analysis (syntax-directed translation), conversion
of input programs to an intermediate representation,
code optimization and code generation” –Wikipedia

What is a Compiler?

– Grune, Bal, Jacobs, Langendoen

What is a Compiler?

– Galles

What is a Compiler?

– Appel

What is a Compiler?

– Cooper & Torczon

Semantic Analysis

“Semantic analysis or context sensitive analysis is a process
in compiler construction, usually after parsing, to gather
necessary semantic information from the source code. It
usually includes type checking, or makes sure a variable is
declared before use which is impossible to describe in the
extended Backus-Naur form and thus not easily detected
during parsing.” –Wikipedia

Name Resolution.
Type Checking.
Definite Assignment.
Dead Code.
Borrow Checking.
Verification.

Books on Compilers

Book Parsing Semantic Analysis Code Gen

Aho et al (’86) 34.6% 5.7% 33.9%
Appel (’02) 12.1% 7.5% 58.8%
C & T (’04) 17.1% 7.8% 63.7%

Galles (’05) 29.7% 10.5% 17.0%
Grune et al (’00) 19.5% 11.0% 43.1%

Scott (’06) 7.6% 11.0% 3.8%
Muchnick (’97) 0.0% 14.7% 47.6%

Courses on Compilers

Book Parsing Semantic Analysis Code Gen

CS153 15% 3% 57%
COMP412 42% 5% 26%
CS143 33% 11% 33%
CSE401 27% 13% 48%
IN4303 35% 17% 18%
SWEN430 13% 25% 29%

Inside an Actual Compiler! (Javac, OpenJDK7)

Package LOC

com/sun/tools/javac/parser 5377
com/sun/tools/javac/comp 18633
com/sun/tools/javac/jvm 11288
com/sun/tools/javac/tree 6475

Suite Parsing Attribution Flow Code Generation

JKit Tests 192ms 821ms 34ms 446ms
JKit Apps 158ms 464ms 31ms 314ms

JKit Test Suite — 266 Individual Classes

JKit Apps Suite — 5 applications comprising 127 Classes

Compilation Pipeline

Overview of Java Compiler

Q) What goes through our pipeline?

Overview of Java Compiler

Q) What goes through our pipeline?

A) Compilation “groups”!

Static Initialisers!

“A properly formed SCJ program should not have cyclic
dependencies within class initialization code.” –JSR302

Parent.java

class Parent { static int ZERO = Child.ONE; }

Child.java

class Child { static int ONE = Parent.ZERO + 1; }

Q) Why is this permitted??

Name Resolution!

A.java

public class A { int field = 0; }

B.java

public class B {

protected int field = 123;

class C extends A { int f() { return field; } }

public static void main(String[] args) {

System.out.println(new B().new C().f());

} }

Q) What gets printed?

Borrow Checking in Rust

fn f() -> i32 {

let mut x = 1;

let y = &x;

x = x + 1;

return x + *y;

}

struct Point {x: i32, y: i32}

fn f() -> i32 {

let mut p = Point{x:1,y:2};

let br = &mut p.y;

return p.x + *br;

}

Borrow checking in Rust is flow sensitive...

Incremental Compilation

“An incremental compiler is one that when invoked, takes
only the changes of a known set of source files and updates
any corresponding output files (in the compiler’s target
language, often bytecode) that may already exist from
previous compilations.” –Wikipedia

Incremental Compilation

Compiler Incremental Fine-Grained
GCC/make Y N
Javac Y N
Eclipse Y N
Go Y N
Scala Y N
Rust Y ?

Q) Why so few fine-grained incremental compilers?

Incremental Compilation

Q) What goes through our pipeline now?

Incremental Compilation

class Child {
private Parent link;

public Child(Parent l){
this.link = l;

}

public String getText() {
return "Child";

}}

class Child {

private Parent ptr;

public Child(Parent l){

this.ptr = l;

}

public String getText() {
return "Child";

}}

Q) What goes through our pipeline now?

Incremental Compilation

Parser. Now accepts source delta

Semantic Analysis. Now accepts AST delta

Incremental Compilation

Incremental Update. Parser produces a tree delta...

Incremental Semantic Analysis

Incremental Update. Invalidate affected nodes and restart

Whiley

Whiley: Overview

function max(int x, int y) -> (int z)

// result must be one of the arguments
ensures x == z || y == z

// result must be greater-or-equal than arguments
ensures x <= z && y <= z:

...

A language designed specifically to simplify verifying software

Several trade offs e.g. performance for verifiability
- Unbounded Arithmetic, value semantics, etc

Goal: to statically verify functions meet their specifications

Whiley: Demo!

“Given an array, find the index of a given item.”

Whiley: Compiler Pipeline

Purity checking to ensure functions are pure

Static initialiser checking to ensure acyclic initialiser graph

Verification begins with Verification Condition Generation

Whiley: Flow Typing

type List is null | { List next, int data }

function length(List l) -> (int r):

//
if l is null:

return 0

//
return 1 + length(l.next)

Flow typing is a flow-sensitive activity

Whiley: Flow Typing

Determines type for each variable at every point

Flow typing is therefore more expensive...

Whiley: Flow Typing

function indexOf(int[] items, int item) -> (int|null r)
// If integer value returned, must be index of item
ensures r is int ==> items[r] == item
// No element before integer r matches item
ensures r is int ==> all { k in 0..r | items[k] != item }
// If null returned, no matching item
ensures r is null ==> all { k in 0..|items| | items[k] != item }:

//
int i = 0
//
while i < |items|
where i >= 0 && i <= |items|
where all { j in 0..i | items[j] != item }:

if items[i] == item:
return i

i = i + 1
//
return null

Flow typing in expressions is useful!!

Whiley: Structural Recursive Types

type List is null | { List next, int data }

type NonEmptyList is { List next, int data }

function append(List l, NonEmptyList r) -> List:

if l is null:
return r

else:
l.next = append(l.next, r)

return l

Whiley: Verification

function abs(int x) -> (int r)

// Either x or its negation returned
ensures (r == x) || (r == -x)

// return value cannot be negative
ensures r >= 0:

//
if x >= 0:

return x

else:
return -x

For this example, 2 verification conditions generated

Whiley: Verification Condition Generation

Whiley: Assertion Language

“the best and most far-reaching single design decision we
made in the implementation of the Spec# verifier was to
introduce the intermediate language Boogie in between the
Spec# program and the formulas sent to the theorem prover.”

–Barnett et al.

Whiley: Assertion Language

Whiley compiler emits verification conditions in assertion
language

assert:
forall (int x):

x >= 0 ==> x >= 0

assert:
forall (int x):

x < 0 ==> -x >= 0

Verification conditions from abs() example shown above

In principle, can hook up different automatic theorem provers

Whiley: Performance

Suite Parsing Type Checking Semantic Analysis Verification

Valid 474ms 592ms 711ms 55107ms

Average 28ms 24ms 29ms 73ms
Fib 26ms 21ms 24ms 51ms
GCD 30ms 24ms 27ms 117ms
Matrix 50ms 157ms 36ms 16031ms
Queens 83ms 146ms 43ms 8249ms
Regex 44ms 173ms 29ms 2567ms

Valid test suite comprised 582 test cases

Bench testsuite comprised 6 micro-benchmarks

Verification

Automated Theorem Proving

“These [decision] procedures have to be highly efficient,
since the problems they solve are inherently hard.”

– Kroenig and Strichman

“Automatic theorem provers (ATPs) based on the resolution
principle ... have reached a high degree of sophistication.
They can often find long proofs even for problems having
thousands of axioms”

–Benzmuller et al.

“Automated Theorem Provers are a dark art — just use Z3!”

Theorem Proving: Assertion Language

Whiley compiler emits verification conditions in assertion
language

define abs_ensures_0(int x, int r) is:
(r == x) || (r == -x)

assert "postcondition not satisfied":

forall(int x):

if:
x >= 0

then:
abs_ensures_0(x, x)

Verification conditions from abs() example shown above

In principle, can hook up different automatic theorem provers

Theorem Proving: Proofs

(1) ∃(int x).(x ≥ 0∧ x < 0)

(2) x1 < 0∧ x1 ≥ 0 (∃-elimination, 1)
(3) x1 ≥ 0 (∧-elimination, 2)
(4) x1 < 0 (∧-elimination, 2)
(5) 0 < 0 (≤-closure, 3 + 4)
(6) ⊥ (simplification, 5)

Purpose-built Automated Theorem Prover developed

Focus on simplicity rather than scale

For example, not based on DPLL

Theorem Proving: ∨-Elimination

(1) ∃(int x).((x = 0∨ x > 0)∧ x < 0)

(2) (x1 = 0∨ x1 > 0)∧ x1 < 0 (∃-elimination, 1)
(3) (x1 = 0∨ x1 > 0) (∧-elimination, 2)
(4) x1 < 0 (∧-elimination, 2)

(5) x1 = 0 (∨-elimination, 2)
(6) x1 < x1 (congruence, 4 + 5)
(7) ⊥ (simplification, 6)

(8) x1 > 0 (∨-elimination, 2)
(9) 0 < 0 (≤-closure, 4 + 8)
(10) ⊥ (simplification, 5)

Theorem Proving: Proof Optimisation

(1) ∃(inti).
(
(i < 0)∧ (i == 0)∧ (i > 0)

)

(2) (i1 < 0)∧ (i1 == 0)∧ (i1 > 0) (∃-elimination, 1)
(3) i1 < 0 (∧-elimination, 2)
(4) i1 == 0 (∧-elimination, 2)
(5) i1 > 0 (∧-elimination, 2)
(6) 0 < 0 (congruence, 3+4)
(7) ⊥ (simplification, 6)

Full Proof. Reflects work done searching proof space by
automated theorem prover.

Pruned Proof. For easier reading, should eliminate unused facts
which were explored.

Q) how big are these proofs?

Theorem Proving: Data Set

Whiley Compiler has (approx) 540 valid and 287 invalid test
cases

Each test case is single Whiley file (either correct or not)

From this, generated 1998 valid assertions and 91 invalid
assertions

Theorem Proving: Experimental Results I

Theorem Proving: Experimental Results II

http://whiley.org

@WhileyDave
http://github.com/Whiley

http://whiley.org
@WhileyDave
http://github.com/Whiley

Theorem Proving: Counterexample Generation?

“Most bugs have small counter examples”

-Jackson’06

Theorem Proving: Counterexample Generation

Approach. Use brute force generation with a “small world” (e.g.
integers in range 〈−5 . . . 5〉, array lengths 〈0 . . . 2〉, etc).

forall(int i, int[] arr):

(arr[i] >= 0) ==> (i == |arr|)

Example. For above, generate models i=0,arr=[] ,

i=0,arr=[0] , i=1,arr=[0] , etc.

Problems. E.g. uninterpreted functions and undefined
behaviour?

forall(int[] xs):

xs[0] > 0

Theorem Proving: Counterexample Generation

Test Counterexample

test_11 i=1, x=[0], i1=1, i2=1

test_102 xs=[0], y=0, x=1

test_129 x1={f:-1}, x={f:1}

test_198 r1=[0], r=[0,0], i=0, i1 =1, ls=[0,0]

Generated counterexamples for 75 / 91 invalid assertions!

Q) What Causes a Large Proof?

Theorem Proving: Experimental Results IV

Theorem Proving: Experimental Results V

Theorem Proving: Experimental Results VI

