

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Affogato: Runtime Detection of Injection
Attacks for Node.js

François Gauthier, Behnaz Hassanshahi, Alexander Jordan

SOAP 2018
Oracle Labs Australia

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. | 3

Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs.
It is intended for information purposes only, and may not be incorporated into any contract.
 It is not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. Oracle reserves the right to alter its development
 plans and practices at any time, and the development, release, and timing of any features or
 functionality described in connection with any Oracle product or service remains at the sole
 discretion of Oracle. Any views expressed in this presentation are my own and do not
necessarily reflect the views of Oracle.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Why Investigate Node.js Security?

• Direct access to OS resources (file system, network) and databases

• No built-in security mechanisms

• Our Focus: taint analysis to detect injection attacks

– Still #1 vulnerability in OWASP Top 10 2017

– Web-servers are most popular class of Node.js applications in Github

• Express: 39.1k  , Koa: 22k  , hapi: 9.7k , Restify: 8.4k , Fastify 7.5k 

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Challenges for Dynamic Taint Analysis

• Engine instrumentation approaches:

– Engine creates and propagates taint labels

– Very hard to maintain if you don’t own the engine, not
flexible, too low-level

• Source instrumentation approaches:

– Taint labels applied by wrapping primitives and extending
objects with taint fields

– Brittle, unsound w.r.t opaque code (see figure on right)

Source

Sink

Opaque

Taint label
lost

Taint label
through boxing

Unbox before
external call

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Prevalence of Opaque code

• Key observations

– Calls to opaque functions are prevalent

– JavaScript coerces most values to strings at
runtime in Node.js

– Taint-sensitive locations (i.e., operations that
sanitise, validate or transform tainted inputs)
are few

Built-in Object Mean Standard Deviation

Array

String

RegExp

9.3

24.6

1.73

7.05

12.82

4.84

All 62.47 21.41

Percentage of calls to opaque functions
in our benchmarks

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

The Affogato Approach

• Instrumentation-based grey-box taint analysis

– Combines black-box reasoning with white-box program analysis

– White-box analysis at selective taint-sensitive locations (watchpoints)

• At watchpoints, values are observed but never modified (non-intrusive)

– Black-box reasoning infers data flows between watchpoints

• Non-intrusive analysis works well with source-level instrumentation
– We use Jalangi2

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Black-box Taint Inference Between Watchpoints

• Uses string similarity to infer taint flows.

– Based on edit-distance Pros:

• Lightweight, i.e. limited amount of instrumentation

• Robust (e.g. does not break the application)

– Cons:

• May introduce spurious taint flows (FPs)

• May miss valid taint flows (FNs)

Source

Sink

Inferred taint
flow

'query%3Dpayload'

'query=payload'

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

• At selective watchpoints
– Handles string transformations

– Unpacks strings

• Introduces the concept of dynamic request sensitivity
– Deals with asynchronous nature of Node.js

White-box Program Analysis

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

• At selective watchpoints, Affogato
– Preserves taints

– Unpacks strings

– Removes taints (sanitizer)

White-box Program Analysis
String transformations

1. //url is "localhost:8000?%24where=1%3D%3D1"

2. function (req, res) {

3. var query = querystring.parse(req.url);

4. //query is {"$where":"1==1"}

5. mongo.collection.find(escape(query), {},

6. function(e, docs)){});

7. }

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

1. //url is "localhost:8000?%24where=1%3D%3D1"

2. function (req, res) {

3. var query = querystring.parse(req.url);

4. //query is {"$where":"1==1"}

5. mongo.collection.find(escape(query), {},

6. function(e, docs)){});

7. }

• At selective watchpoints, Affogato
– Preserves taints

– Unpacks strings

– Removes taints (sanitizer)

White-box Program Analysis
String transformations

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

• At selective watchpoints, Affogato
– Preserves taints

– Unpacks strings

– Removes taints (sanitizer)

White-box Program Analysis
String transformations

1. //url is "localhost:8000?%24where=1%3D%3D1"

2. function (req, res) {

3. var query = querystring.parse(req.url);

4. //query is {"$where":"1==1"}

5. mongo.collection.find(escape(query), {},

6. function(e, docs)){});

7. }

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

• At selective watchpoints, Affogato
– Preserves taints

– Unpacks strings

– Removes taints (sanitizer)

White-box Program Analysis
String transformations

1. //url is "localhost:8000?%24where=1%3D%3D1"

2. function (req, res) {

3. var query = querystring.parse(req.url);

4. //query is {"$where":"1==1"}

5. mongo.collection.find(escape(query), {},

6. function(e, docs)){});

7. }

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

• Intertwined computations from different requests

– Node.js allows serving multiple requests asynchronously

– Might result in FP, e.g., tainted string values from request A inadvertently correlate with untainted
string values from request B

• Request-sensitivity

– Analogous to call site or object sensitivity in static analysis

– Avoids cross-request correlations

– We use request IDs to correlate request and response objects

Dynamic request sensitivity

White-box Program Analysis

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Example

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Example

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Example

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Example

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Example

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Example

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

• We use introspection to identify watchpoints based on configurations
– To get reference to runtime objects

– In contrast with signature-based approaches

– E.g., functions are first-class citizens

• so both send and req.end should be considered sinks when

 var send = req.end

• Instrumentation
– Currently we use Jalangi2

– We plan to move to NodeProf, a new instrumentation framework for GraalVM

• Supports ES6+

• Features: selective instrumentation, built-in and library scope

Implementation

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Evaluation

• Average (1000 exec.) runtime overhead:

– Instrumentation: 4.70 ×

– Analysis: 1.19 ×

Benchmark Finds
vuln.

FP

Node Advisory

Node Advisory (fixed)

Synode [C-A. Staicu et al. NDSS’18]

NodeGoat

Yes

No

Yes

Yes

No

No

No

No

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Evaluation

• Average (1000 exec.) runtime overhead:

– Instrumentation: 4.70 ×

– Analysis: 1.19 ×

• Effectiveness
– No false positives

Benchmark Finds
vuln.

FP

Node Advisory

Node Advisory (fixed)

Synode [C-A. Staicu et al. NDSS’18]

NodeGoat

Yes

No

Yes

Yes

No

No

No

No

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Evaluation

• Average (1000 exec.) runtime overhead:

– Instrumentation: 4.70 ×

– Analysis: 1.19 ×

• Effectiveness
– No false positives

– Sanitisers

Benchmark Finds
vuln.

FP

Node Advisory

Node Advisory (fixed)

Synode [C-A. Staicu et al. NDSS’18]

NodeGoat

Yes

No

Yes

Yes

No

No

No

No

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Evaluation

• Average (1000 exec.) runtime overhead:

– Instrumentation: 4.70 ×

– Analysis: 1.19 ×

• Effectiveness
– No false positives

– Sanitisers

– Request sensitivity removes 3 FPs in mongui

Benchmark Finds
vuln.

FP

Node Advisory

Node Advisory (fixed)

Synode [C-A. Staicu et al. NDSS’18]

NodeGoat

Yes

No

Yes

Yes

No

No

No

No

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Evaluation

• Average (1000 exec.) runtime overhead:

– Instrumentation: 4.70 ×

– Analysis: 1.19 ×

• Effectiveness
– No false positives

– Sanitisers

– Request sensitivity removes 3 FPs in mongui

– Practicality
• No FP even when fuzzed

• Synode times out (1 hour) and prevents load of NodeGoat

Benchmark Finds
vuln.

FP

Node Advisory

Node Advisory (fixed)

Synode [C-A. Staicu et al. NDSS’18]

NodeGoat

Yes

No

Yes

Yes

No

No

No

No

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Conclusion

• We presented a grey-box taint analysis for Node.js

– Supports opaque code

– Successfully analyzes real-world applications

– Can be more precise with more sophisticated program analysis

• This is just a starting point to find the sweetspot

Black-box reasoning Sound and precise analysis

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Questions?

New instrumentation framework for Node.js:
NodeProf running on GraalVM
https://github.com/Haiyang-Sun/nodeprof.js

francois.gauthier, behnaz.hassanshahi, alexander.jordan
@oracle.com

Affogato is an Italian dessert
where hot espresso is poured
over cold ice cream.

https://github.com/Haiyang-Sun/nodeprof.js
https://github.com/Haiyang-Sun/nodeprof.js
https://github.com/Haiyang-Sun/nodeprof.js

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

