
Flogent
Information Flow Control Security Feature for Cogent

Vivian Dang (UNSW)
Supervisor: Christine Rizkallah         

@viv_yd
1



Information Flow Security Feature on Cogent

2



Cogent

3



Cogent
● Purely Functional Language

○ Linear Type System (Uniqueness type)
● Easy to reason semantics
● Aim to reduce cost of verification

4



⊑

5



The “Why”

6



Causes of Security Vulnerabilities

Matt Miller, Presentation at BlueHat 2019, Microsoft 7



Memory Safety
● Temporal Safety

○ use of uninitialised memory, 
use-after-free

○ handled by Linear Types in Cogent
● Spatial Safety

○ buffer overflow/array out-of-bounds
○ stack smashing
○ handled by Type Safety in Cogent

✓

✓
8



What about the other 30%?
● Hardware problems:

○ Spectre and Meltdown

● Information Flow Vulnerabilities
○ A growing source of security issues *

* Stephan Neuhaus and Thomas Zimmermann, Security Trend Analysis with CVE Topic Models, ISSRE 2010, IEEE.
9



Information Flow Vulnerabilities:
● Secret data is accessed or modified by insecure processes
● Breach of Confidentiality or Integrity

10

● Examples:
○ Password leaks
○ Side channel attack: Timing, Power Analysis
○ Injections

My focus: vulnerabilities observable in the language semantics



The “What”

11



Flogent

12



Information Flow Control (IFC)
● Information is tagged by different security levels
● Arranged in a lattice or order
● Info can only flow from low to high

13



Work of Abadi et al.
● Seminal work for security types (420 citations)

● Monads to type computations with their levels
● Tags are part of the type system (static semantics)
● No run-time tagging -> No performance impact
● Checking at compile-time -> Early feedback

14



MAC (Mandatory Access Control)
● Haskell implementation of Abadi’s work
● Statically-enforced IFC library for Haskell

M. Vassena et al. (2017)

15



MAC - Overview
● Computations are labelled with security level

○ must have authorisation to perform
● Information is labelled

○ must have authorisation to read

M. Vassena et al. (2017)
16



MAC - Overview
MAC library has two main operations:
● unlabel

○ allow un-labelling information if authorisation is satisfied
● join 

○ transform computations from high-level security to low-level 
security

○ but observing result is stopped by labelling

M. Vassena et al. (2017)

17



MAC Operations

18



Scenario

19



Case study

Alice BobPassword

Good | Bad

20



MAC Library

21



Relevance to Cogent
● Purely functional language
● Static approach - good for systems programming

Differences

● Cogent doesn’t support Monads
● Cogent has Linear Types

○ variables of this type must be used exactly once

22



Cogent doesn’t support monads

23

Haskell

Cogent



Flogent
- Tagging the World with a security level
- Utilise the Linearity of the types

24



Flogent

25



Flogent vs MAC

26

MAC Flogent

unsafePerformIO Generated C code can call to 
unsafe C functions

Exceptions No Exceptions

Non-termination All Cogent functions terminate



Current status
● Implemented the join and unlock operations in (mini) Cogent
● More testing WIP

27



What’s Next?

28



Future work
● Some more case studies to test expressiveness             
● Formalisation
● Making sure that security properties (confidentiality & 

integrity) hold

29



Thank you! 

30

@viv_yd



Citations
1. M. Vassena, A. Russo, P. Buiras, L. Waye, (2017) ‘Mac - A verified static information-flow control 

library’, Journal of Logical and Algebraic Methods in Programming, Elsevier.
2. Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke (1999). “A Core Calculus of 

Dependency”. Proceedings of POPL ’99. ACM.
3. A. Russo, (2015) ‘Two Can Keep a Secret, If One of Them Uses Haskell’, Proceedings of ICFP 2015, 

ACM.
4. L. O'Connor et al. (2016) ‘Refinement Through Restraint: bringing down the cost of verification’, 

Proceedings of ICFP 2016, ACM.

31


