
Extending Moth to Support Types as Objects

Erin Greenwood-Thessman, Michael Homer, James Noble

Victoria University of Wellington



What is Moth?

Moth is an interpreter of Grace, an object-oriented language.

It extends SOMns, a Newspeak interpreter using Truffle and
GraalVM.

Grace has a gradual type system.

2 / 15



Transient Gradual Typing

For Moth, we implemented transient gradual typing.

1 type Point = interface {
2 x
3 y
4 }
5 def position: Point = object {
6 def x: Number = 5
7 def y: Number = 2
8 }
9

10 method equal(a: Point, b: Point) → Boolean {
11 return (a.x == b.x) && { a.y == b.y }
12 }

3 / 15



How where types previously supported?

Types are created during translation of the AST and are
determined statically with its own name lookup.

Type checks occur as part of writes, reads, and method calls.

To optimize the checks, Moth uses:

I Subtype Cache

I Specialization

Why did we want to change it?

I Unify name lookup for types with rest of Grace

I Support user-defined types

4 / 15



Types as Objects

Made types into objects that can be passed around.

These support method calls like any other object.

Seperated type checks from writes and other operations to their
own node in the AST. These nodes self-optimize type checking
during execution of the program.

5 / 15



Type as Objects

1 type Point = interface { x, y }
2 // Same as
3 method Point { return interface { x, y } }
4
5 def position: Point = Point.cast(object {
6 def x: Number = Number.cast(5)
7 def y: Number = Number.cast(2)
8 })
9

10 method equal(a: Point, b: Point) → Boolean {
11 Point.cast(a)
12 Point.cast(b)
13 return Boolean.cast((a.x == b.x) && { a.y == b.y })
14 }

6 / 15



Performance

We ran 21 benchmarks using the new and previous
implementations, comparing typed and untyped performance.

The preliminary results show that for the benchmarks:

I 7 were slower

I 5 had similar performance

I 8 were faster

I 1 was faster untyped and slower typed

7 / 15



Example Graph

100 200 300
0

50

100

150

List

Current (Typed) Previous (Typed)

Current (Untyped) Previous (Untyped)

8 / 15



Worst Performance

100 200 300
0

200

400

600

DeltaBlue

100 200 300
0

50

100

150

200

Float

100 200 300
0

100

200

300

Go

100 200 300
0

100

200

300

Havlak

100 200 300
0

50

100

Permute

100 200 300
0

20

40

60

80

Sieve

100 200 300
0

100

200

SpectralNorm

Current (Typed)

Previous (Typed)

Current (Untyped)

Previous (Untyped)

9 / 15



Similar Performance

100 200 300
0

50

100

150

CD

100 200 300
0

20

40

60

80

GraphSearch

100 200 300
0

20

40

Mandelbrot

100 200 300
0

200

400

600

Queens

100 200 300
0

20

40

60

80

Snake

Current (Typed)

Previous (Typed)

Current (Untyped)

Previous (Untyped)

10 / 15



Faster Performance

100 200 300
0

10

20

30

Bounce

100 200 300
0

100

200

300

Fannkuch

100 200 300
0

20

40

60

80

Json

100 200 300
0

50

100

150

List

100 200 300
0

20

40

60

80

NBody

100 200 300
0

20

40

60

PyStone

100 200 300
0

50

100

Storage

100 200 300
0

50

100

Towers

Current (Typed)

Previous (Typed)

Current (Untyped)

Previous (Untyped)

11 / 15



The Richards Benchmark

100 200 300
0

100

200

300

Richards

Current (Typed) Previous (Typed)

Current (Untyped) Previous (Untyped)

12 / 15



Evaluating Worst-case Performance

We evaluated the worst-case performance of transitive typing by
manually inserting type casts everywhere.

We found that even with extra type checks, the optimized
execution had the same performance as with the current type
checks on average.

However there was something odd with Richards...

13 / 15



The Richards Benchmark

100 200 300
0

100

200

300

Current vs Previous

100 200 300
0

100

200

300

Current vs w/ Casts

Previous (Typed) Current (Typed) Current w/ Cast (Typed)

Previous (Untyped) Current (Untyped) Current w/ Cast (Untyped)

14 / 15



Questions?

Logo by Jasmine Vollherbst (jasmine@jasminevollherbst.com)

15 / 15


