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Safe harbor statement

The following is intended to provide some insight into a line of research in Oracle 
Labs. It is intended for information purposes only, and may not be incorporated into 
any contract. It is not a commitment to deliver any material, code, or functionality, 
and should not be relied upon in making purchasing decisions. Oracle reserves the 
right to alter its development plans and practices at any time, and the development, 
release, and timing of any features or functionality described in connection with any 
Oracle product or service remains at the sole discretion of Oracle. Any views 
expressed in this presentation are my own and do not necessarily reflect the views of 
Oracle.
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String Analysis

 Compute values a string expression can take at a given program point

 Potential uses

Security vulnerability detection

Input sanitisation and validation

Query generation

Data format generation (XML, JSON, HTML etc.)

Dynamic code generation

Dynamic class loading
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Analysis Performance

 Trade-offs between precision and scalability

 RegEx generation

More precise, less scalable 

 Constant propagation

More scalable, less precise 

 Practical perspective

Do we need to compute regular expressions for every client analysis?

Would a less precise but more scalable technique suffice for some?
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Evaluation

 Investigate performance trade-offs of different string analysis techniques

 Investigate precision of a client analysis

 String analysers 

Java String Analyser

Oracle Labs String Analyser 
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Java String Analyser (JSA)

 Christensen, Møller and Schwartzbach

Precise Analysis of String Expressions, SAS 2003

 Goal

Compute over-approximation of values a string expression may take at runtime

 Target

Relevant string expressions (hotspots)

 Outputs

Finite State Automata
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Java String Analyser Architecture
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Value Flow Graph

 Edges  

directed def-use edges representing possible data flows

 Nodes 

variables or expressions
 Init – string value from a constant
 Join – assignment or other join location
 Concat – string concatenation
 UnaryOp – unary string operation
 BinaryOp – binary string operation 
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Value Flow Graph Example

● Left First-level bulleted text

● First-level bulleted text

● First-level bulleted text

● First-level bulleted text

● Highlight text 
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 Value Flow Graph to Context-free Grammar 

Transform VFG to Context Free Grammar using transformation rules

 Context-free Grammar to Finite Automata

Approximate CFG with a regular grammar containing original language

Convert strongly regular grammar to Multi-level Finite Automata                 
(MLFA, a hierarchical directed acyclic graph of NFA)

Extract minimal FA for each hotspot from MLFA

Value Flow Graph to Regular Expressions
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Oracle Labs String Analyser (OLSA)

 Inspired by Java String Analyser

 Value Flow Graph extended with Switch nodes 

 Context-sensitive constant propagation
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Hotspot     VFG     Strings 



Precision Evaluation

 Compare precision of JSA and OLSA

 Subjects

Small test programs developed for JSA testing 

 Test program features

Single hotspot 

Hard-coded inputs

 Ground truth obtained by executing test programs
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Unit Test Results

OLSA JSA

Complete: T = G 15% 32%

Disjoint: T ∩ G = ∅ ∧ U(T) 53% 34%

Incorrect: T ∩ G = ∅ ∧ R(T) 15% 4%

Over-approximation: G ⊂ T 8% 28%

Partial: T ∩ G ≠ ∅ 7% 1%

Under-approximation: T ⊂ G 2% 1%
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T – computed string set 

G – ground truth string set

R(T) – T is fully resolved

U(T) – T is unresolved (fully or partially) 



Reflection Analysis Results

 Compute java.class.forName arguments 

 17 DaCapo programs (20 – 700 KLOC)

 Precision (over 5 programs) is similar (except 1 result)
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Programs Runtime (sec) Resolved

OSLA 17 2 60%

JSA 5 1020 39%



Key Reasons of Imprecision 

 User input (!)

 Semantics of string-manipulating functions

 Analysis of containers (e.g., arrays)

 Handling of loops and recursion calls

 Field-sensitivity
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Scalability Evaluation 

 17 DaCapo programs (3,058 KLOC combined)

 Only OLSA and JSA failed

 Different hotspot configurations

Lightweight (reflection)

Default (I/O functions)

Heavyweight (any string argument)

 Results (string resolution)

Resolved, Partial, Unresolved
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DaCapo Results: Oracle Labs String Analyser 
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Configuration Runtime (sec) Hotspots Resolved Unresolved Partial

Lightweight 2.13 318 60% 9% 30%

Default 8.77 4,304 39% 40% 40%

Heavyweight 221.94 156,502 18% 61% 21%



Conclusions

 JSA is more precise but fails on large codebases

 OLSA scales well to large programs, even in extreme cases 

 For reflection analysis, lightweight constant propagation could be as 
precise as regular expression generating techniques

Precision depends on analysed code features
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Thank you!
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