

Kostyantyn Vorobyov, Yang Zhao, Raghavendra Ramesh and Padmanabhan Krishnan

Oracle Labs, Brisbane

November, 2019

Experiments with String Analysis

2 © 2019 Oracle

Safe harbor statement

The following is intended to provide some insight into a line of research in Oracle
Labs. It is intended for information purposes only, and may not be incorporated into
any contract. It is not a commitment to deliver any material, code, or functionality,
and should not be relied upon in making purchasing decisions. Oracle reserves the
right to alter its development plans and practices at any time, and the development,
release, and timing of any features or functionality described in connection with any
Oracle product or service remains at the sole discretion of Oracle. Any views
expressed in this presentation are my own and do not necessarily reflect the views of
Oracle.

3 © 2019 Oracle

String Analysis

 Compute values a string expression can take at a given program point

 Potential uses

Security vulnerability detection

Input sanitisation and validation

Query generation

Data format generation (XML, JSON, HTML etc.)

Dynamic code generation

Dynamic class loading

4 © 2019 Oracle

Analysis Performance

 Trade-offs between precision and scalability

 RegEx generation

More precise, less scalable

 Constant propagation

More scalable, less precise

 Practical perspective

Do we need to compute regular expressions for every client analysis?

Would a less precise but more scalable technique suffice for some?

5 © 2019 Oracle

Evaluation

 Investigate performance trade-offs of different string analysis techniques

 Investigate precision of a client analysis

 String analysers

Java String Analyser

Oracle Labs String Analyser

6 © 2019 Oracle

Java String Analyser (JSA)

 Christensen, Møller and Schwartzbach

Precise Analysis of String Expressions, SAS 2003

 Goal

Compute over-approximation of values a string expression may take at runtime

 Target

Relevant string expressions (hotspots)

 Outputs

Finite State Automata

7 © 2019 Oracle

Java String Analyser Architecture

8 © 2019 Oracle

Value Flow Graph

 Edges

directed def-use edges representing possible data flows

 Nodes

variables or expressions
 Init – string value from a constant
 Join – assignment or other join location
 Concat – string concatenation
 UnaryOp – unary string operation
 BinaryOp – binary string operation

9 © 2019 Oracle

Value Flow Graph Example

● Left First-level bulleted text

● First-level bulleted text

● First-level bulleted text

● First-level bulleted text

● Highlight text

10 © 2019 Oracle

 Value Flow Graph to Context-free Grammar

Transform VFG to Context Free Grammar using transformation rules

 Context-free Grammar to Finite Automata

Approximate CFG with a regular grammar containing original language

Convert strongly regular grammar to Multi-level Finite Automata
(MLFA, a hierarchical directed acyclic graph of NFA)

Extract minimal FA for each hotspot from MLFA

Value Flow Graph to Regular Expressions

11 © 2019 Oracle

Oracle Labs String Analyser (OLSA)

 Inspired by Java String Analyser

 Value Flow Graph extended with Switch nodes

 Context-sensitive constant propagation

12 © 2019 Oracle

Hotspot VFG Strings

Precision Evaluation

 Compare precision of JSA and OLSA

 Subjects

Small test programs developed for JSA testing

 Test program features

Single hotspot

Hard-coded inputs

 Ground truth obtained by executing test programs

13 © 2019 Oracle

Unit Test Results

OLSA JSA

Complete: T = G 15% 32%

Disjoint: T ∩ G = ∅ ∧ U(T) 53% 34%

Incorrect: T ∩ G = ∅ ∧ R(T) 15% 4%

Over-approximation: G ⊂ T 8% 28%

Partial: T ∩ G ≠ ∅ 7% 1%

Under-approximation: T ⊂ G 2% 1%

14 © 2019 Oracle

T – computed string set

G – ground truth string set

R(T) – T is fully resolved

U(T) – T is unresolved (fully or partially)

Reflection Analysis Results

 Compute java.class.forName arguments

 17 DaCapo programs (20 – 700 KLOC)

 Precision (over 5 programs) is similar (except 1 result)

15 © 2019 Oracle

Programs Runtime (sec) Resolved

OSLA 17 2 60%

JSA 5 1020 39%

Key Reasons of Imprecision

 User input (!)

 Semantics of string-manipulating functions

 Analysis of containers (e.g., arrays)

 Handling of loops and recursion calls

 Field-sensitivity

16 © 2019 Oracle

Scalability Evaluation

 17 DaCapo programs (3,058 KLOC combined)

 Only OLSA and JSA failed

 Different hotspot configurations

Lightweight (reflection)

Default (I/O functions)

Heavyweight (any string argument)

 Results (string resolution)

Resolved, Partial, Unresolved

17 © 2019 Oracle

DaCapo Results: Oracle Labs String Analyser

18 © 2019 Oracle

Configuration Runtime (sec) Hotspots Resolved Unresolved Partial

Lightweight 2.13 318 60% 9% 30%

Default 8.77 4,304 39% 40% 40%

Heavyweight 221.94 156,502 18% 61% 21%

Conclusions

 JSA is more precise but fails on large codebases

 OLSA scales well to large programs, even in extreme cases

 For reflection analysis, lightweight constant propagation could be as
precise as regular expression generating techniques

Precision depends on analysed code features

19 © 2019 Oracle

Thank you!

20 © 2019 Oracle

	Slide 1
	Title slide
	Safe harbor statement
	Two content layout
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Quadrant for infographics layout

