Lower Bound Overheads of
Android Garbage Collection

Kunal Sareen (anu)

Joint Work: Sara Hamouda (Google DeepMind), Steve Blackburn (Google DeepMind),
Hans Boehm (Android), Lokesh Gidra (Android), Martin Maas (Google DeepMind)

Motivation

12 GB RAM

Pixel 8 Pro lllustration by Mliu92 - Own work, CC BY-SA4.0 2

https://commons.wikimedia.org/w/index.php?curid=139194125

Problem Statement

What are the costs of memory management in Android?

Is there a sound methodology for measuring costs?

Challenges

Understanding Android Garbage Collection (GC) overhead is hard
No simple baseline
No proper experimental methodology

Realistic applications are hard to control

Benchmarking: Trade-off Space

Ideal is high realism, high fidelity

Ideal

Realism

o @

Fidelity

Background: Garbage Collection
Garbage collection allows programmers to forget about managing memory
themselves

Less error-prone

Memory safe!

Background: Android

Android Architecture

Android Runtime

Background: Android

Zygote
Preload common libraries and classes

All applications are forked from Zygote

Background: Android

Zygote
Clicks App
Zygote Launcher
Starts System Fork A -
Server PP Start Activity
System Server Activity Manager
Starts
Activity

Manager

Distilling the

Background: Lower Bound Overhead

Real Cost of

Production Garbage Collectors

Zixian Cai
Australian National University Australian National University,

Stephen M. Blackburn Michael D. Bond Martin Maas
Google Ohio State University Google
.com i .ohio-state.edu .com

zixian.cai@anu.edu.au

Abstract—Despite the long history of garbage collection (GC)
and its in modern there is
surprisingly little clarity about its true cost. oyt
ing their cost, crucial tradeoffs made by garbage collectors (GCs)
g0 unnoticed. This can lead to misguided design constraints and
evaluation criteria used by GC researchers and users, hindering
the development of high-performance, low-cost GCs.

In this paper, we develop a methodology that allows us
to empirically estimate the cost of GC for any given set
of metrics. This fundamental quantification has eluded the

and Alibaba, make extensive use of such languages. On clients,
JavaScript engines are embedded in every web browser, and
Java runtimes are embedded in every Android phone.
Because of the ubiquity of GC, the research community has
extensively studied GC performance. The approaches include
characterizing specific elements of GC behavior, performing
comparative evaluation among garbage collectors (GCs), and
deconstructing the performance of specific GCs. These aspects

research community, even when using modern,
methodologies. By distilling out the explicitly eninable GE
cost, we estimate the intrinsic application execution cost using
different GCs. The minimum distilled cost forms a baseline.
Subtracting this baseline from the total execution costs, we can
then place an empirical lower bound on the absolute costs of
different GCs. Using this methodology, we study five production
GCs in OpenJDK 17, a high-performance Java runtime. We
measure the cost of these collectors, and expose their respective
key performance tradeoffs.

We find that with a modestly sized heap, production GCs
incur substantial overheads across a diverse suite of modern
benchmarks, spending a least 7-82 % more wall-clock time and
6-92 % more CPU cycles relative to the baseline cost. We show
that these costs can be masked by concurrency and generous
provisioning of memory/compute. In addition, we find that newer
low-pause GCs are significantly more expensive than older GCs,
and, surprisingly, sometimes deliver worse application latency
than stop-the-world GCs.

Our findings reaffirm that GC is by no means a solved
problem and that a low-cost, low-latency GC remains clusive. We

adopting the di together with a
wider range of cost metrics for future GC evaluations. This will
not only help the ¢ ity more

are y a literature, including [1]-[10].
They are explicitly non-goals of our work.

While this rich literature helps us understand how GCs
compare, how they are designed, and what key sources of cost
are, there is a surprising lack of clarity regarding the real costs
that GC brings to a programming language. In this paper, we
focus on two key problems: (a) lack of clarity about the absolute
cost of GC, and (b) misinterpretations of GC evaluations due
to limited cost metrics. We now offer more detail regarding
these two problems and outline our contributions.

@) Unclear absolute costs: The absolute cost that garbage
collectors impose on moder production runtimes is an im-
portant quantification, but it has eluded the community to
date. Tts i is twofold. For ing language
implementers and hardware architects, understanding the
absolute cost of GC and its magnitude relative to the rest of the
language runtime can help them decide where to spend research
and engineering resources. For language users, knowing the
absolute cost of GC can help them decide whether to use a
managed language o to use alternatives such as C/C++ and
Rust—a decision that often cannot be easily reversed.

Slide from this presentation by Zixian Cai (https:.//www.zcai.org). 10

https://www.youtube.com/watch?v=OUZt0mo1xic
https://www.zcai.org/

Distillation

Ideal Application Cost ?
smole [
Lower
eneratonal [%
Overhead
woo [NNNEL 0

An empirical lower bound on
the cost of each collector.

Minimum distilled
application cost

Slide from this presentation by Zixian Cai (https:.//www.zcai.org). 11

https://www.youtube.com/watch?v=OUZt0mo1xic
https://www.zcai.org/

Requirements

Ability to cheaply, reliably gather key metrics
Constant application workload

Ability to control for time/space trade-off
Well-understood, simple baseline

HownN =

Slide from this presentation by Zixian Cai (https:.//www.zcai.org). 12

https://www.youtube.com/watch?v=OUZt0mo1xic
https://www.zcai.org/

Workload Selection

Start with DaCapo + GCBench

Build understanding from simple benchmarks and extending to more
complex ones

Realism

e ©

Fidelity

13

Key Contribution: Obtaining LBO Graphs for Android

How did we get here?
Attribution of costs
Reducing sources of noise

Refining methodology

4.0

3.5

[w
5 =}

N
=}

CPU Cycles Overhead

15

1.0

gcbench
LBO for CPU Cycles

—e— ConcurrentCopying Page Realloc Opt (6328126475)
+— ConcurrentCopying No Page Realloc Opt (144031b619)
—e— ConcurrentMarkCompact (6328126475)
«— SemiSpace Page Realloc Opt, No Write Barrier (989c947f70)
—— NoGC Page Realloc Opt, With Write Barrier (6328126475)
NoGC Page Realloc Opt, No Write Barrier (989c947f70)

1.0

1.5

2.0 2:5 3.0 3.5 4.0
Heap Size (Relative to Minimum)

14

Experimental Methodology

Attribution of costs

Simple . - . application (aka mutator)
Generational I I . . l .

Image from this presentation by Zixian Cai (https.//www.zcai.org). 15

https://www.youtube.com/watch?v=OUZt0mo1xic
https://www.zcai.org/

Experimental Methodology

Attribution of costs
GC cost

Benchmark iteration

Benchmark Callback

Start Start

ART

End End

perf_events,
Timers,
etc.

16

Experimental Methodology

Use best practices from GC and performance analysis literature
Control heap sizes
Interleaved execution

Reducing sources of experimental noise

17

Results

avrora
LBO for CPU Cycles

1175

1150

1125

1.100

1.075

1.050

CPU Cycles Overhead

1.025

1.000

0.975

—— ConcurrentCopying Page Realloc Opt (6328126475)

—+— ConcurrentCopying No Page Realloc Opt (144031b619)

ConcurrentMarkCompact (6328126475)

SemiSpace Page Realloc Opt, No Write Barrier (989c947f70)

—— NoGC Page Realloc Opt, With Write Barrier (6328126475)
NoGC Page Realloc Opt, No Write Barrier (989c947f70)

|
1

) 25 30 35 a0
Heap Size (Relative to Minimum)

luindex
LBO for CPU Cycles

gcbench

LBO for CPU Cycles

h2
LBO for CPU Cycles

w
°

~
&

~

CPU Cycles Overhead
o

—+— ConcurrentCopying Page Realloc Opt (6328126475)

—+— ConcurrentCopying No Page Realloc Opt (144031b619)
—e— ConcurrentMarkCompact (6328126475)

—+— SemiSpace Page Realloc Opt, No Write Barrier (989c947f70)
NoGC Page Realloc Opt, With Write Barrier (6328126475)

NoGC Page Realloc Opt, No Write Barrier (989c947f70)
_—

~

CPU Cycles Overhead
N
o

— ConcurrentCopying Page Realloc Opt (6328126475)
—+— ConcurrentCopying No Page Realloc Opt (144031b619)

— ConcurrentMarkCompact (6328126475)

—+— SemiSpace Page Realloc Opt, No Write Barrier (989c947f70)

20 25 30
Heap Size (Relative to Minimum)

pmd
LBO for CPU Cycles

20 25 30
Heap Size (Relative to Minimum)

xalan
LBO for CPU Cycles

CPU Cycles Overhead

ConcurrentCopying Page Realloc Opt (6328126475)
ConcurrentCopying No Page Realloc Opt (144031b619)
ConcurrentMarkCompact (6328126475)

SemiSpace Page Realloc Opt, No Write Barrier (989c947f70)
—— NoGC Page Realloc Opt, With Write Barrier (6328126475)
NoGC Page Realloc Opt, No Write Barrier (989c947f70)

20 25 30
Heap Size (Relative to Minimum)

CPU Cycles Overhead

—e— ConcurrentCopying Page Realloc Opt (6328126475)
ConcurrentCopying No Page Realloc Opt (144031b619)
ConcurrentMarkCompact (6328126475)

SemiSpace Page Realloc Opt, No Write Barrier (989c94770)
NoGC Page Realloc Opt, With Write Barrier (6328126475)
NoGC Page Realloc Opt, No Write Barrier (989c947f70)

CPU Cycles Overhead

0 4] 3.0
Heap Size (Relative to Minimum)

35 40

=
=
[l

IS
S

1.05

ConcurrentCopying Page Realloc Opt (6328126475)
ConcurrentCopying No Page Realloc Opt (144031b619)
ConcurrentMarkCompact (6328126475)

SemiSpace Page Realloc Opt, No Write Barrier (989c947f70)

0 25 30
Heap Size (Relative to Minimum)

Results

CPU Cycles Overhead

w
°

o

gcbench
LBO for CPU Cycles

e —
—— ConcurrentCopying Page Realloc Opt (6328126475)
+— ConcurrentCopying No Page Realloc Opt (144031b619)
—— ConcurrentMarkCompact (6328126475)
SemiSpace Page Realloc Opt, No Write Barrier (989c947f70)
—— NoGC Page Realloc Opt, With Write Barrier (6328126475)

.\ NoGC Page Realloc Opt, No Write Barrier (989c947f70)

—_—

20 25 30
Heap Size (Relative to Minimum)

19

Results: GCBench

gcbench
LBO for CPU Cycles
4.0
3.5 [.k'\
——
3.0 \.ﬁ.
T .
2 —s— ConcurrentCopying Page Realloc Opt (6328126475)
§ \ —+— ConcurrentCopying No Page Realloc Opt (144031b619)
625 —e— ConcurrentMarkCompact (6328126475)
E «— SemiSpace Page Realloc Opt, No Write Barrier (989c947f70)
5 . —— NoGC Page Realloc Opt, With Write Barrier (6328126475)
. . — \ NoGC Page Realloc Opt, No Write Barrier (989c947f70)
U : .
\\\ \'
15 e S
1.0
10 15 2.0 25 3.0 35 4.0

Heap Size (Relative to Minimum)

20

Results: GCBench

4.0

3.5

3.0

2.5

2.0

CPU Cycles Overhead

15

1.0

gcbench
LBO for CPU Cycles

.
F 4
/
/
/
/

\.\:
—s— ConcurrentCopying Page Realloc Opt (6328126475)
\ »— ConcurrentCopying No Page Realloc Opt (144031b619)
= —e— ConcurrentMarkCompact (6328126475)
\ «— SemiSpace Page Realloc Opt, No Write Barrier (989c947f70)
—— NoGC Page Realloc Opt, With Write Barrier (6328126475)

NoGC Page Realloc Opt, No Write Barrier (989c947f70)

1.0 15 2.0
Heap Size (Relative to Minimum)

21

Workload Selection

Start with simple to drive but realistic application as proof-of-concept

Watching videos on YouTube

Ideal

Realism

o @

Fidelity

Experimental Methodology

Running benchmarks
Use UlAutomator tests
However, tests use JUnit and other heavyweight frameworks

Don’t want to measure the test harness

23

Experimental Methodology

Simple, lightweight benchmark runner

Directly use UlAutomator to drive tests

UlAutomator YouTube

Inputs

Buttons,
Swipes,

Experimental Methodology

Attribution of costs
GC cost

Benchmark iteration

UlAutomator

Start

YouTube

End

Timers,
etc.

perf_events,

25

Experimental Methodology

Controlling heap size
Set only for target app

Configurable at execution time via file

26

Preliminary Results: YouTube

youtube
Total Number of GCs

label
—— ConcurrentCopying (e425dbecf6)
25 ConcurrentMarkCompact (e425dbecf6)
—— SemiSpace (e425dbecf6)
20 A
wn
@]
(U]
N
i L)
T .
Q
[
>
= .
10 5“
5 \ \os.

1 2 3 4 5 6 7 8
Heap Size (Relative to Minimum)

27

Preliminary Results: YouTube

1.175

1.150

1.125

1.100

CPU Cycles Overhead
=
o
~
w

1.050

1.025

1.000

youtube
LBO for CPU Cycles

—e— ConcurrentCopying (e425dbecf6)
»— ConcurrentMarkCompact (e425dbecf6)
—e— SemiSpace (e425dbecf6)

2 3 a 5 6 7 8
Heap Size (Relative to Minimum)

28

Outcomes

Revealing GC costs for realistic, representative mobile workloads
Controlling heap sizes for real applications
Gathering total costs of benchmark and attribute costs to GC

Running on the phone!

29

Future Work

Use more GC-sensitive benchmarks

Identify and remove sources of experimental noise

Realism

o O

Ideal

Fidelity

30

Reflections

Space-time trade-off is key to anchoring GC performance
Simple, well-understood baselines are invaluable
Running experiments in controlled environments can be insightful

Set of (constant-work) benchmarks are incredibly important

31

