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Motivation

12 GB RAM

Pixel 8 Pro lllustration by Mliu92 - Own work, CC BY-SA4.0 2



https://commons.wikimedia.org/w/index.php?curid=139194125

Problem Statement

What are the costs of memory management in Android?

Is there a sound methodology for measuring costs?



Challenges

Understanding Android Garbage Collection (GC) overhead is hard
No simple baseline
No proper experimental methodology

Realistic applications are hard to control



Benchmarking: Trade-off Space

Ideal is high realism, high fidelity
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Background: Garbage Collection
Garbage collection allows programmers to forget about managing memory
themselves

Less error-prone

Memory safe!



Background: Android

Android Architecture

Android Runtime




Background: Android

Zygote
Preload common libraries and classes

All applications are forked from Zygote



Background: Android

Zygote
Clicks App
Zygote Launcher
Starts System Fork A -
Server PP Start Activity
System Server Activity Manager
Starts
Activity

Manager
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Abstract—Despite the long history of garbage collection (GC)
and its in modern there is
surprisingly little clarity about its true cost. oyt
ing their cost, crucial tradeoffs made by garbage collectors (GCs)
g0 unnoticed. This can lead to misguided design constraints and
evaluation criteria used by GC researchers and users, hindering
the development of high-performance, low-cost GCs.

In this paper, we develop a methodology that allows us
to empirically estimate the cost of GC for any given set
of metrics. This fundamental quantification has eluded the

and Alibaba, make extensive use of such languages. On clients,
JavaScript engines are embedded in every web browser, and
Java runtimes are embedded in every Android phone.
Because of the ubiquity of GC, the research community has
extensively studied GC performance. The approaches include
characterizing specific elements of GC behavior, performing
comparative evaluation among garbage collectors (GCs), and
deconstructing the performance of specific GCs. These aspects

research community, even when using modern,
methodologies. By distilling out the explicitly eninable GE
cost, we estimate the intrinsic application execution cost using
different GCs. The minimum distilled cost forms a baseline.
Subtracting this baseline from the total execution costs, we can
then place an empirical lower bound on the absolute costs of
different GCs. Using this methodology, we study five production
GCs in OpenJDK 17, a high-performance Java runtime. We
measure the cost of these collectors, and expose their respective
key performance tradeoffs.

We find that with a modestly sized heap, production GCs
incur substantial overheads across a diverse suite of modern
benchmarks, spending a least 7-82 % more wall-clock time and
6-92 % more CPU cycles relative to the baseline cost. We show
that these costs can be masked by concurrency and generous
provisioning of memory/compute. In addition, we find that newer
low-pause GCs are significantly more expensive than older GCs,
and, surprisingly, sometimes deliver worse application latency
than stop-the-world GCs.

Our findings reaffirm that GC is by no means a solved
problem and that a low-cost, low-latency GC remains clusive. We

adopting the di together with a
wider range of cost metrics for future GC evaluations. This will
not only help the ¢ ity more

are y a literature, including [1]-[10].
They are explicitly non-goals of our work.

While this rich literature helps us understand how GCs
compare, how they are designed, and what key sources of cost
are, there is a surprising lack of clarity regarding the real costs
that GC brings to a programming language. In this paper, we
focus on two key problems: (a) lack of clarity about the absolute
cost of GC, and (b) misinterpretations of GC evaluations due
to limited cost metrics. We now offer more detail regarding
these two problems and outline our contributions.

@) Unclear absolute costs: The absolute cost that garbage
collectors impose on moder production runtimes is an im-
portant quantification, but it has eluded the community to
date. Tts i is twofold. For ing language
implementers and hardware architects, understanding the
absolute cost of GC and its magnitude relative to the rest of the
language runtime can help them decide where to spend research
and engineering resources. For language users, knowing the
absolute cost of GC can help them decide whether to use a
managed language o to use alternatives such as C/C++ and
Rust—a decision that often cannot be easily reversed.

Slide from this presentation by Zixian Cai (https:.//www.zcai.org). 10



https://www.youtube.com/watch?v=OUZt0mo1xic
https://www.zcai.org/

Distillation

Ideal Application Cost ?
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An empirical lower bound on
the cost of each collector.

Minimum distilled
application cost

Slide from this presentation by Zixian Cai (https:.//www.zcai.org). 11



https://www.youtube.com/watch?v=OUZt0mo1xic
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Requirements

Ability to cheaply, reliably gather key metrics
Constant application workload

Ability to control for time/space trade-off
Well-understood, simple baseline

HownN =

Slide from this presentation by Zixian Cai (https:.//www.zcai.org). 12



https://www.youtube.com/watch?v=OUZt0mo1xic
https://www.zcai.org/

Workload Selection

Start with DaCapo + GCBench

Build understanding from simple benchmarks and extending to more
complex ones

Realism

e ©

Fidelity
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Key Contribution: Obtaining LBO Graphs for Android

How did we get here?
Attribution of costs
Reducing sources of noise

Refining methodology
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Experimental Methodology

Attribution of costs

Simple . - . application (aka mutator)
Generational I I . . l .

Image from this presentation by Zixian Cai (https.//www.zcai.org). 15



https://www.youtube.com/watch?v=OUZt0mo1xic
https://www.zcai.org/

Experimental Methodology

Attribution of costs
GC cost

Benchmark iteration

Benchmark Callback

Start Start

ART

End End

perf_events,
Timers,
etc.
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Experimental Methodology

Use best practices from GC and performance analysis literature
Control heap sizes
Interleaved execution

Reducing sources of experimental noise
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Results
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Results
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Results: GCBench
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Results: GCBench
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Workload Selection

Start with simple to drive but realistic application as proof-of-concept

Watching videos on YouTube

Ideal

Realism
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Experimental Methodology

Running benchmarks
Use UlAutomator tests
However, tests use JUnit and other heavyweight frameworks

Don’t want to measure the test harness

23



Experimental Methodology

Simple, lightweight benchmark runner

Directly use UlAutomator to drive tests

UlAutomator YouTube

Inputs

Buttons,
Swipes,




Experimental Methodology

Attribution of costs
GC cost

Benchmark iteration

UlAutomator

Start

YouTube

End

Timers,
etc.

perf_events,
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Experimental Methodology

Controlling heap size
Set only for target app

Configurable at execution time via file
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Preliminary Results: YouTube
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Preliminary Results: YouTube
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Outcomes

Revealing GC costs for realistic, representative mobile workloads
Controlling heap sizes for real applications
Gathering total costs of benchmark and attribute costs to GC

Running on the phone!
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Future Work

Use more GC-sensitive benchmarks

Identify and remove sources of experimental noise

Realism

o O

Ideal

Fidelity
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Reflections

Space-time trade-off is key to anchoring GC performance
Simple, well-understood baselines are invaluable
Running experiments in controlled environments can be insightful

Set of (constant-work) benchmarks are incredibly important
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