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Motivation

2Pixel 8 Pro Illustration by Mliu92 - Own work, CC BY-SA 4.0

Pixel 8 Pro (2023)

12 GB RAM

https://commons.wikimedia.org/w/index.php?curid=139194125


What are the costs of memory management in Android?

Is there a sound methodology for measuring costs?

Problem Statement
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Challenges

Understanding Android Garbage Collection (GC) overhead is hard

No simple baseline

No proper experimental methodology

Realistic applications are hard to control
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Ideal is high realism, high fidelity

Benchmarking: Trade-off Space

Realism

Fidelity

Ideal
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Background: Garbage Collection
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Garbage collection allows programmers to forget about managing memory 
themselves

Less error-prone

Memory safe!



Background: Android
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Android Architecture

Linux Kernel

Native Daemons
And Libraries

HAL

Android Runtime

…



Background: Android
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Zygote

Preload common libraries and classes

All applications are forked from Zygote



Background: Android
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Zygote

Zygote

System Server Activity Manager

Launcher

Clicks App

Start Activity
Starts System

Server
Fork App

Starts
Activity 
Manager



Background: Lower Bound Overhead

https://doi.org/10.1109/ISPASS55109.2022.00005

10Slide from this presentation by Zixian Cai (https://www.zcai.org).

https://www.youtube.com/watch?v=OUZt0mo1xic
https://www.zcai.org/


Distillation

Simple

Generational

No GC

Minimum distilled 
application cost

Lower 
Bound 
Overhead 
(LBO)

An empirical lower bound on 
the cost of each collector.

Ideal Application Cost ?

11Slide from this presentation by Zixian Cai (https://www.zcai.org).

https://www.youtube.com/watch?v=OUZt0mo1xic
https://www.zcai.org/


Requirements

1. Ability to cheaply, reliably gather key metrics
2. Constant application workload
3. Ability to control for time/space trade-off
4. Well-understood, simple baseline

12Slide from this presentation by Zixian Cai (https://www.zcai.org).

https://www.youtube.com/watch?v=OUZt0mo1xic
https://www.zcai.org/


Start with DaCapo + GCBench

Build understanding from simple benchmarks and extending to more
complex ones

Workload Selection
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How did we get here?

Attribution of costs

Reducing sources of noise

Refining methodology

Key Contribution: Obtaining LBO Graphs for Android
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Attribution of costs

Experimental Methodology

Benchmark Callback ART

perf_events,
Timers,
etc.

HarnessBegin

HarnessEnd

HarnessBegin

HarnessEnd

15Image from this presentation by Zixian Cai (https://www.zcai.org).

https://www.youtube.com/watch?v=OUZt0mo1xic
https://www.zcai.org/


Attribution of costs

GC cost

Benchmark iteration

Experimental Methodology

Benchmark Callback ART

perf_events,
Timers,
etc.

Start

End
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Start

End



Use best practices from GC and performance analysis literature

Control heap sizes

Interleaved execution

Reducing sources of experimental noise

Experimental Methodology
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Results
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Results
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Results: GCBench
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Results: GCBench
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Start with simple to drive but realistic application as proof-of-concept

Workload Selection
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Watching videos on YouTube



Running benchmarks

Use UIAutomator tests

However, tests use JUnit and other heavyweight frameworks

Don’t want to measure the test harness

Experimental Methodology
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Simple, lightweight benchmark runner

Directly use UIAutomator to drive tests

Experimental Methodology
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UIAutomator YouTube

Inputs

Buttons,
Swipes,
…



Attribution of costs

GC cost

Benchmark iteration

Experimental Methodology

YouTube

perf_events,
Timers,
etc.

Start

End
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UIAutomator



Controlling heap size

Set only for target app (by default in Android heap settings affect all apps, globally)

Configurable at execution time via file

Experimental Methodology
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Preliminary Results: YouTube
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Preliminary Results: YouTube
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Outcomes

Revealing GC costs for realistic, representative mobile workloads

Controlling heap sizes for real applications

Gathering total costs of benchmark and attribute costs to GC

Running on the phone!
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Future Work

Use more GC-sensitive benchmarks

Identify and remove sources of experimental noise
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Reflections

Space-time trade-off is key to anchoring GC performance

Simple, well-understood baselines are invaluable

Running experiments in controlled environments can be insightful

Set of (constant-work) benchmarks are incredibly important
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