
Kunal Sareen (ANU)

Dec 1, 2023

Joint Work: Sara Hamouda (Google DeepMind), Steve Blackburn (Google DeepMind),

Hans Boehm (Android), Lokesh Gidra (Android), Martin Maas (Google DeepMind)

Lower Bound Overheads of 
Android Garbage Collection



Motivation

2Pixel 8 Pro Illustration by Mliu92 - Own work, CC BY-SA 4.0

Pixel 8 Pro (2023)

12 GB RAM

https://commons.wikimedia.org/w/index.php?curid=139194125


What are the costs of memory management in Android?

Is there a sound methodology for measuring costs?

Problem Statement

3



Challenges

Understanding Android Garbage Collection (GC) overhead is hard

No simple baseline

No proper experimental methodology

Realistic applications are hard to control

4



Ideal is high realism, high fidelity

Benchmarking: Trade-off Space

Realism

Fidelity

Ideal

5



Background: Garbage Collection

6

Garbage collection allows programmers to forget about managing memory 
themselves

Less error-prone

Memory safe!



Background: Android

7

Android Architecture

Linux Kernel

Native Daemons
And Libraries

HAL

Android Runtime

…



Background: Android

8

Zygote

Preload common libraries and classes

All applications are forked from Zygote



Background: Android

9

Zygote

Zygote

System Server Activity Manager

Launcher

Clicks App

Start Activity
Starts System

Server
Fork App

Starts
Activity 
Manager



Background: Lower Bound Overhead

https://doi.org/10.1109/ISPASS55109.2022.00005

10Slide from this presentation by Zixian Cai (https://www.zcai.org).

https://www.youtube.com/watch?v=OUZt0mo1xic
https://www.zcai.org/


Distillation

Simple

Generational

No GC

Minimum distilled 
application cost

Lower 
Bound 
Overhead 
(LBO)

An empirical lower bound on 
the cost of each collector.

Ideal Application Cost ?

11Slide from this presentation by Zixian Cai (https://www.zcai.org).

https://www.youtube.com/watch?v=OUZt0mo1xic
https://www.zcai.org/


Requirements

1. Ability to cheaply, reliably gather key metrics
2. Constant application workload
3. Ability to control for time/space trade-off
4. Well-understood, simple baseline

12Slide from this presentation by Zixian Cai (https://www.zcai.org).

https://www.youtube.com/watch?v=OUZt0mo1xic
https://www.zcai.org/


Start with DaCapo + GCBench

Build understanding from simple benchmarks and extending to more
complex ones

Workload Selection

13



How did we get here?

Attribution of costs

Reducing sources of noise

Refining methodology

Key Contribution: Obtaining LBO Graphs for Android

14



Attribution of costs

Experimental Methodology

Benchmark Callback ART

perf_events,
Timers,
etc.

HarnessBegin

HarnessEnd

HarnessBegin

HarnessEnd

15Image from this presentation by Zixian Cai (https://www.zcai.org).

https://www.youtube.com/watch?v=OUZt0mo1xic
https://www.zcai.org/


Attribution of costs

GC cost

Benchmark iteration

Experimental Methodology

Benchmark Callback ART

perf_events,
Timers,
etc.

Start

End

16

Start

End



Use best practices from GC and performance analysis literature

Control heap sizes

Interleaved execution

Reducing sources of experimental noise

Experimental Methodology

17



Results

18



Results

19



Results: GCBench

20



Results: GCBench

21



Start with simple to drive but realistic application as proof-of-concept

Workload Selection

22

Watching videos on YouTube



Running benchmarks

Use UIAutomator tests

However, tests use JUnit and other heavyweight frameworks

Don’t want to measure the test harness

Experimental Methodology

23



Simple, lightweight benchmark runner

Directly use UIAutomator to drive tests

Experimental Methodology

24

UIAutomator YouTube

Inputs

Buttons,
Swipes,
…



Attribution of costs

GC cost

Benchmark iteration

Experimental Methodology

YouTube

perf_events,
Timers,
etc.

Start

End

25

UIAutomator



Controlling heap size

Set only for target app (by default in Android heap settings affect all apps, globally)

Configurable at execution time via file

Experimental Methodology

26



Preliminary Results: YouTube

27



Preliminary Results: YouTube

28



Outcomes

Revealing GC costs for realistic, representative mobile workloads

Controlling heap sizes for real applications

Gathering total costs of benchmark and attribute costs to GC

Running on the phone!

29



Future Work

Use more GC-sensitive benchmarks

Identify and remove sources of experimental noise

30



Reflections

Space-time trade-off is key to anchoring GC performance

Simple, well-understood baselines are invaluable

Running experiments in controlled environments can be insightful

Set of (constant-work) benchmarks are incredibly important

31


